Harper Paul R, Moore Joshua W, Woolley Thomas E
School of Mathematics, Cardiff University, Cardiff, UK.
Health Syst (Basingstoke). 2021 Jan 17;10(1):31-40. doi: 10.1080/20476965.2020.1857214. eCollection 2021.
We provide an open-source model to estimate the number of secondary Covid-19 infections caused by potentially infectious students returning from university to private homes with other occupants. Using a Monte-Carlo method and data derived from UK sources, we predict that an infectious student would, on average, infect 0.94 other household members. Or, as a rule of thumb, each infected student would generate (just less than) one secondary within-household infection. The total number of secondary cases for all returning students is dependent on the virus prevalence within each student population at the time of their departure from campus back home. Although the proposed estimation method is general and robust, the results are sensitive to the input data. We provide Matlab code and a helpful online app (http://bit.ly/Secondary_infections_app) that can be used to estimate numbers of secondary infections based on local parameter values. This can be used worldwide to support policy making.
我们提供了一个开源模型,用于估计从大学返回与其他居住者同住的私人住宅的潜在感染学生所导致的新冠二次感染病例数。利用蒙特卡洛方法和源自英国的数据,我们预测,一名感染学生平均会感染0.94名其他家庭成员。或者,根据经验法则,每名感染学生将引发(略少于)一例家庭内二次感染。所有返乡学生的二次感染病例总数取决于他们离开校园返家时每个学生群体中的病毒流行率。尽管所提出的估计方法具有通用性和稳健性,但结果对输入数据敏感。我们提供了Matlab代码和一个实用的在线应用程序(http://bit.ly/Secondary_infections_app),可用于根据当地参数值估计二次感染病例数。这可在全球范围内用于支持政策制定。