Suppr超能文献

本地化设计最佳 COVID-19 检测站:应用于大学校园的离散事件仿真模型。

Designing optimal COVID-19 testing stations locally: A discrete event simulation model applied on a university campus.

机构信息

Department of Industrial and Enterprise Systems Engineering, Enterprise Systems Optimization Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.

出版信息

PLoS One. 2021 Jun 29;16(6):e0253869. doi: 10.1371/journal.pone.0253869. eCollection 2021.

Abstract

Providing sufficient testing capacities and accurate results in a time-efficient way are essential to prevent the spread and lower the curve of a health crisis, such as the COVID-19 pandemic. In line with recent research investigating how simulation-based models and tools could contribute to mitigating the impact of COVID-19, a discrete event simulation model is developed to design optimal saliva-based COVID-19 testing stations performing sensitive, non-invasive, and rapid-result RT-qPCR tests processing. This model aims to determine the adequate number of machines and operators required, as well as their allocation at different workstations, according to the resources available and the rate of samples to be tested per day. The model has been built and experienced using actual data and processes implemented on-campus at the University of Illinois at Urbana-Champaign, where an average of around 10,000 samples needed to be processed on a daily basis, representing at the end of August 2020 more than 2% of all the COVID-19 tests performed per day in the USA. It helped identify specific bottlenecks and associated areas of improvement in the process to save human resources and time. Practically, the overall approach, including the proposed modular discrete event simulation model, can easily be reused or modified to fit other contexts where local COVID-19 testing stations have to be implemented or optimized. It could notably support on-site managers and decision-makers in dimensioning testing stations by allocating the appropriate type and quantity of resources.

摘要

以高效的方式提供充足的检测能力和准确的结果对于防止健康危机(如 COVID-19 大流行)的传播和降低曲线至关重要。根据最近研究调查了基于模拟的模型和工具如何有助于减轻 COVID-19 的影响,开发了一个离散事件模拟模型,用于设计最佳的基于唾液的 COVID-19 检测站,进行敏感、非侵入性和快速结果 RT-qPCR 检测处理。该模型旨在根据可用资源和每天要检测的样本数量,确定所需的机器和操作人员的数量,并确定其在不同工作站的分配。该模型使用实际数据和在伊利诺伊大学厄巴纳-香槟分校校园内实施的流程进行构建和体验,该校平均每天需要处理约 10000 个样本,到 2020 年 8 月底,这代表了美国每天进行的所有 COVID-19 检测的 2%以上。它有助于确定流程中的特定瓶颈和改进领域,以节省人力资源和时间。实际上,包括提出的模块化离散事件模拟模型在内的整体方法可以轻松地重复使用或修改,以适应其他需要实施或优化本地 COVID-19 检测站的情况。它可以为现场管理人员和决策者提供支持,通过分配适当的资源类型和数量来确定检测站的规模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b89a/8241042/243ecafcd1cd/pone.0253869.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验