Suppr超能文献

在英国大学环境中建立 SARS-CoV-2 传播模型。

Modelling SARS-CoV-2 transmission in a UK university setting.

机构信息

The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7 AL, United Kingdom; Joint UNIversities Pandemic and Epidemiological Research(1), United Kingdom.

The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7 AL, United Kingdom; Joint UNIversities Pandemic and Epidemiological Research(1), United Kingdom.

出版信息

Epidemics. 2021 Sep;36:100476. doi: 10.1016/j.epidem.2021.100476. Epub 2021 Jun 29.

Abstract

Around 40% of school leavers in the UK attend university and individual universities generally host thousands of students each academic year. Bringing together these student communities during the COVID-19 pandemic may require strong interventions to control transmission. Prior modelling analyses of SARS-CoV-2 transmission within universities using compartmental modelling approaches suggest that outbreaks are almost inevitable. We constructed a network-based model to capture the interactions of a student population in different settings (housing, social and study). For a single academic term of a representative campus-based university, we ran a susceptible-latent-infectious-recovered type epidemic process, parameterised according to available estimates for SARS-CoV-2. We investigated the impact of: adherence to (or effectiveness of) isolation and test and trace measures; room isolation of symptomatic students; and supplementary mass testing. With all adhering to test, trace and isolation measures, we found that 22% (7%-41%) of the student population could be infected during the autumn term, compared to 69% (56%-76%) when assuming zero adherence to such measures. Irrespective of the adherence to isolation measures, on average a higher proportion of students resident on-campus became infected compared to students resident off-campus. Room isolation generated minimal benefits. Regular mass testing, together with high adherence to isolation and test and trace measures, could substantially reduce the proportion infected during the term compared to having no testing. Our findings suggest SARS-CoV-2 may readily transmit in a university setting if there is limited adherence to nonpharmaceutical interventions and/or there are delays in receiving test results. Following isolation guidance and effective contact tracing curbed transmission and reduced the expected time an adhering student would spend in isolation.

摘要

在英国,大约 40%的中学毕业生进入大学,每学年各个大学通常有数千名学生。在 COVID-19 大流行期间,将这些学生群体聚集在一起可能需要采取强有力的干预措施来控制传播。先前使用房室模型方法对大学内 SARS-CoV-2 传播进行的建模分析表明,疫情爆发几乎是不可避免的。我们构建了一个基于网络的模型,以捕捉不同环境(住房、社交和学习)中的学生群体的相互作用。对于一个基于校园的代表性大学的单个学术学期,我们运行了一个易感染-潜伏-感染-恢复型的流行过程,根据 SARS-CoV-2 的可用估计进行参数化。我们研究了以下因素的影响:(隔离和检测追踪措施的)遵守情况或有效性;对有症状学生的房间隔离;以及补充大规模检测。在所有学生都遵守检测、追踪和隔离措施的情况下,我们发现 22%(7%-41%)的学生人口可能在秋季学期被感染,而假设对这些措施完全不遵守时,感染率为 69%(56%-76%)。无论隔离措施的遵守情况如何,平均而言,住校学生的感染比例高于不住校学生。房间隔离产生的好处很小。定期进行大规模检测,同时高度遵守隔离和检测追踪措施,可以大大降低本学期内的感染比例,而无需进行检测。我们的研究结果表明,如果非药物干预措施的遵守程度有限,或者检测结果的延迟,SARS-CoV-2 在大学校园环境中可能很容易传播。遵循隔离指南和有效的接触者追踪可以遏制传播并减少遵守隔离的学生预期隔离时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0565/7611483/b59e6e260748/EMS131909-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验