Department of Biology, Computational Biology, Stanford University, CA; Department of Management Science and Engineering, Stanford University School of Engineering, CA.
Department of Management Science and Engineering, Stanford University School of Engineering, CA; Department of Pediatrics, Stanford University School of Medicine, CA; Clinical Excellence Research Center, Stanford University School of Medicine, CA.
Ann Epidemiol. 2022 Dec;76:136-142. doi: 10.1016/j.annepidem.2022.08.051. Epub 2022 Sep 8.
No method is available to systematically study SARS-CoV-2 transmission dynamics using the data that rideshare companies share with government agencies. We developed a proof-of-concept method for the analysis of SARS-CoV-2 transmissions between rideshare passengers and drivers.
To assess whether this method could enable hypothesis testing about SARS-CoV-2, we repeated ten 200-day agent-based simulations of SARS-CoV-2 propagation within the Los Angeles County rideshare network. Assuming data access for 25% of infections, we estimated an epidemiologist's ability to analyze the observable infection patterns to correctly identify a baseline viral variant A, as opposed to viral variant A with mask use (50% reduction in viral particle exchange), or a more infectious viral variant B (300% higher cumulative viral load).
Simulations had an average of 190,387 potentially infectious rideshare interactions, resulting in 409 average diagnosed infections. Comparison of the number of observed and expected passenger-to-driver infections under each hypothesis demonstrated our method's ability to consistently discern large infectivity differences (viral variant A vs. viral variant B) given partial data from one large city, and to discern smaller infectivity differences (viral variant A vs. viral variant A with masks) given partial data aggregated across multiple cities.
This novel statistical method suggests that, for the present and subsequent pandemics, government-facilitated analysis of rideshare data combined with diagnosis records may augment efforts to better understand viral transmission dynamics and to measure changes in infectivity associated with nonpharmaceutical interventions and emergent viral strains.
目前尚无方法可利用网约车公司与政府机构共享的数据系统地研究 SARS-CoV-2 的传播动态。我们开发了一种用于分析网约车乘客和司机之间 SARS-CoV-2 传播的概念验证方法。
为了评估该方法是否可以用于检验关于 SARS-CoV-2 的假设,我们在洛杉矶县网约车网络内重复进行了十次 SARS-CoV-2 传播的 200 天基于代理的模拟。假设可获取 25%感染病例的数据,我们估计了传染病学家分析可观察到的感染模式以正确识别基线病毒变体 A(与使用口罩相比,病毒粒子交换减少 50%)或更具传染性的病毒变体 B(累积病毒载量增加 300%)的能力。
模拟平均有 190387 次潜在传染性网约车交互,导致 409 例平均确诊感染。在每种假设下,观察到的和预期的乘客到司机感染数量的比较表明,我们的方法能够在给定一个大城市的部分数据的情况下,始终如一地辨别出较大的传染性差异(病毒变体 A 与病毒变体 B),并在给定多个城市汇总的部分数据的情况下辨别出较小的传染性差异(病毒变体 A 与戴口罩的病毒变体 A)。
这种新颖的统计方法表明,对于当前和随后的大流行,政府协助对网约车数据进行分析并结合诊断记录,可能会增强对病毒传播动态的理解,并衡量与非药物干预和新兴病毒株相关的传染性变化的努力。