Suppr超能文献

迈向可重复的序列学习模型:具有基于奖励学习的模块化脉冲神经网络的复制与分析

Toward reproducible models of sequence learning: replication and analysis of a modular spiking network with reward-based learning.

作者信息

Zajzon Barna, Duarte Renato, Morrison Abigail

机构信息

Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-BRAIN Institute I, Jülich Research Centre, Jülich, Germany.

Department of Computer Science 3-Software Engineering, RWTH Aachen University, Aachen, Germany.

出版信息

Front Integr Neurosci. 2023 Jun 15;17:935177. doi: 10.3389/fnint.2023.935177. eCollection 2023.

Abstract

To acquire statistical regularities from the world, the brain must reliably process, and learn from, spatio-temporally structured information. Although an increasing number of computational models have attempted to explain how such sequence learning may be implemented in the neural hardware, many remain limited in functionality or lack biophysical plausibility. If we are to harvest the knowledge within these models and arrive at a deeper mechanistic understanding of sequential processing in cortical circuits, it is critical that the models and their findings are accessible, reproducible, and quantitatively comparable. Here we illustrate the importance of these aspects by providing a thorough investigation of a recently proposed sequence learning model. We re-implement the modular columnar architecture and reward-based learning rule in the open-source NEST simulator, and successfully replicate the main findings of the original study. Building on these, we perform an in-depth analysis of the model's robustness to parameter settings and underlying assumptions, highlighting its strengths and weaknesses. We demonstrate a limitation of the model consisting in the hard-wiring of the sequence order in the connectivity patterns, and suggest possible solutions. Finally, we show that the core functionality of the model is retained under more biologically-plausible constraints.

摘要

为了从世界中获取统计规律,大脑必须可靠地处理时空结构化信息并从中学习。尽管越来越多的计算模型试图解释这种序列学习如何在神经硬件中实现,但许多模型在功能上仍有局限或缺乏生物物理合理性。如果我们要汲取这些模型中的知识并对皮质回路中的序列处理有更深入的机制理解,那么模型及其发现的可访问性、可重复性和定量可比性至关重要。在这里,我们通过对最近提出的一个序列学习模型进行全面研究来说明这些方面的重要性。我们在开源的NEST模拟器中重新实现了模块化柱状结构和基于奖励的学习规则,并成功复制了原始研究的主要发现。在此基础上,我们对模型对参数设置和潜在假设的鲁棒性进行了深入分析,突出了其优点和缺点。我们展示了该模型的一个局限性,即序列顺序在连接模式中是硬连线的,并提出了可能的解决方案。最后,我们表明在更符合生物学合理性的约束条件下,该模型的核心功能得以保留。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51f7/10310927/215e747c78cd/fnint-17-935177-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验