Suppr超能文献

人工神经网络与 LASSO 回归在预测胰腺侵袭性 IPMN 手术后长期生存中的比较。

Artificial neural networks versus LASSO regression for the prediction of long-term survival after surgery for invasive IPMN of the pancreas.

机构信息

Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.

出版信息

PLoS One. 2021 Mar 25;16(3):e0249206. doi: 10.1371/journal.pone.0249206. eCollection 2021.

Abstract

Prediction of long-term survival in patients with invasive intraductal papillary mucinous neoplasm (IPMN) of the pancreas may aid in patient assessment, risk stratification and personalization of treatment. This study aimed to investigate the predictive ability of artificial neural networks (ANN) and LASSO regression in terms of 5-year disease-specific survival. ANN work in a non-linear fashion, having a potential advantage in analysis of variables with complex correlations compared to regression models. LASSO is a type of regression analysis facilitating variable selection and regularization. A total of 440 patients undergoing surgical treatment for invasive IPMN of the pancreas registered in the Surveillance, Epidemiology and End Results (SEER) database between 2004 and 2016 were analyzed. The dataset was prior to analysis randomly split into a modelling and test set (7:3). The accuracy, precision and F1 score for predicting mortality were 0.82, 0.83 and 0.89, respectively for ANN with variable selection compared to 0.79, 0.85 and 0.87, respectively for the LASSO-model. ANN using all variables showed similar accuracy, precision and F1 score of 0.81, 0.85 and 0.88, respectively compared to a logistic regression analysis. McNemar´s test showed no statistical difference between the models. The models showed high and similar performance with regard to accuracy and precision for predicting 5-year survival status.

摘要

预测具有侵袭性的胰腺管内乳头状黏液性肿瘤(IPMN)患者的长期生存情况,有助于患者评估、风险分层和治疗个体化。本研究旨在探讨人工神经网络(ANN)和 LASSO 回归在预测 5 年疾病特异性生存方面的预测能力。ANN 以非线性方式工作,与回归模型相比,在分析具有复杂相关性的变量方面具有潜在优势。LASSO 是一种回归分析类型,可促进变量选择和正则化。分析了 2004 年至 2016 年间在监测、流行病学和最终结果(SEER)数据库中接受手术治疗的侵袭性胰腺 IPMN 的 440 例患者。在分析之前,数据集被随机分为建模和测试集(7:3)。与 LASSO 模型相比,经变量选择后的 ANN 预测死亡率的准确性、精确性和 F1 评分分别为 0.82、0.83 和 0.89,而 LASSO 模型分别为 0.79、0.85 和 0.87。使用所有变量的 ANN 显示出相似的准确性、精确性和 F1 评分,分别为 0.81、0.85 和 0.88,与逻辑回归分析相比。McNemar 检验显示模型之间无统计学差异。这些模型在预测 5 年生存状态方面的准确性和精确性方面表现出较高且相似的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4838/7993879/bd5526ce591f/pone.0249206.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验