Suppr超能文献

电子数据收集在多国、基于医院、针对母婴保健的临床观察中的应用:EN-BIRTH 研究经验。

Electronic data collection for multi-country, hospital-based, clinical observation of maternal and newborn care: EN-BIRTH study experiences.

机构信息

Maternal, Adolescent, Reproductive & Child Health (MARCH) Centre, London School of Hygiene & Tropical Medicine, London, UK.

Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.

出版信息

BMC Pregnancy Childbirth. 2021 Mar 26;21(Suppl 1):234. doi: 10.1186/s12884-020-03426-5.

Abstract

BACKGROUND

Observation of care at birth is challenging with multiple, rapid and potentially concurrent events occurring for mother, newborn and placenta. Design of electronic data (E-data) collection needs to account for these challenges. The Every Newborn Birth Indicators Research Tracking in Hospitals (EN-BIRTH) was an observational study to assess measurement of indicators for priority maternal and newborn interventions and took place in five hospitals in Bangladesh, Nepal and Tanzania (July 2017-July 2018). E-data tools were required to capture individually-linked, timed observation of care, data extraction from hospital register-records or case-notes, and exit-survey data from women.

METHODS

To evaluate this process for EN-BIRTH, we employed a framework organised around five steps for E-data design, data collection and implementation. Using this framework, a mixed methods evaluation synthesised evidence from study documentation, standard operating procedures, stakeholder meetings and design workshops. We undertook focus group discussions with EN-BIRTH researchers to explore experiences from the three different country teams (November-December 2019). Results were organised according to the five a priori steps.

RESULTS

In accordance with the five-step framework, we found: 1) Selection of data collection approach and software: user-centred design principles were applied to meet the challenges for observation of rapid, concurrent events around the time of birth with time-stamping. 2) Design of data collection tools and programming: required extensive pilot testing of tools to be user-focused and to include in-built error messages and data quality alerts. 3) Recruitment and training of data collectors: standardised with an interactive training package including pre/post-course assessment. 4) Data collection, quality assurance, and management: real-time quality assessments with a tracking dashboard and double observation/data extraction for a 5% case subset, were incorporated as part of quality assurance. Internet-based synchronisation during data collection posed intermittent challenges. 5) Data management, cleaning and analysis: E-data collection was perceived to improve data quality and reduce time cleaning.

CONCLUSIONS

The E-Data system, custom-built for EN-BIRTH, was valued by the site teams, particularly for time-stamped clinical observation of complex multiple simultaneous events at birth, without which the study objectives could not have been met. However before selection of a custom-built E-data tool, the development time, higher training and IT support needs, and connectivity challenges need to be considered against the proposed study or programme's purpose, and currently available E-data tool options.

摘要

背景

对于母亲、新生儿和胎盘来说,出生时的护理观察面临着多个快速且可能同时发生的事件,这给护理观察带来了挑战。电子数据(E-data)的收集设计需要考虑到这些挑战。“每个新生儿出生指标医院观察研究”(EN-BIRTH)是一项观察性研究,旨在评估优先产妇和新生儿干预措施指标的测量,并在孟加拉国、尼泊尔和坦桑尼亚的五家医院进行(2017 年 7 月至 2018 年 7 月)。E-data 工具需要能够单独链接,及时观察护理情况,从医院登记记录或病例记录中提取数据,以及从女性那里获取出院调查数据。

方法

为了评估 EN-BIRTH 中的这一过程,我们采用了一个围绕 E-data 设计、数据收集和实施的五个步骤的框架。使用该框架,一项混合方法评估综合了研究文件、标准操作程序、利益相关者会议和设计研讨会的证据。我们与 EN-BIRTH 研究人员进行了焦点小组讨论,以探讨来自三个不同国家团队的经验(2019 年 11 月至 12 月)。结果根据五个预先设定的步骤进行组织。

结果

根据五步框架,我们发现:1)选择数据收集方法和软件:应用以用户为中心的设计原则,以满足在分娩时快速、同时发生的事件的观察挑战,同时带有时间戳。2)设计数据收集工具和编程:需要对工具进行广泛的试点测试,使其以用户为中心,并包括内置错误消息和数据质量警报。3)数据收集员的招聘和培训:采用标准化的互动培训包,包括课程前后评估。4)数据收集、质量保证和管理:实时质量评估,带有跟踪仪表板,并对 5%的案例子集进行双重观察/数据提取,作为质量保证的一部分。数据收集过程中的基于互联网的同步存在间歇性挑战。5)数据管理、清理和分析:E-data 收集被认为可以提高数据质量并减少清理时间。

结论

为 EN-BIRTH 定制的 E-Data 系统受到了现场团队的重视,特别是对于在分娩时对复杂的多个同时发生事件进行带时间戳的临床观察,没有这一系统,研究目标就无法实现。然而,在选择定制的 E-data 工具之前,需要考虑开发时间、更高的培训和 IT 支持需求以及连接性挑战,这些都需要与拟议的研究或计划的目的以及当前可用的 E-data 工具选项相对比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2db/7995708/87bdfb023586/12884_2020_3426_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验