Institute of Integrative Biology, Department for Environmental System Science, ETH Zurich, 8092 Zurich, Switzerland
Institute of Integrative Biology, Department for Environmental System Science, ETH Zurich, 8092 Zurich, Switzerland.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2023467118.
The rapid rise of antibiotic resistance, combined with the increasing cost and difficulties to develop new antibiotics, calls for treatment strategies that enable more sustainable antibiotic use. The development of such strategies, however, is impeded by the lack of suitable experimental approaches that allow testing their effects under realistic epidemiological conditions. Here, we present an approach to compare the effect of alternative multidrug treatment strategies in vitro using a robotic liquid-handling platform. We use this framework to study resistance evolution and spread implementing epidemiological population dynamics for treatment, transmission, and patient admission and discharge, as may be observed in hospitals. We perform massively parallel experimental evolution over up to 40 d and complement this with a computational model to infer the underlying population-dynamical parameters. We find that in our study, combination therapy outperforms monotherapies, as well as cycling and mixing, in minimizing resistance evolution and maximizing uninfecteds, as long as there is no influx of double resistance into the focal treated community.
抗生素耐药性的迅速上升,加上开发新抗生素的成本不断增加和难度加大,呼吁采取能够更可持续地使用抗生素的治疗策略。然而,由于缺乏合适的实验方法来在现实的流行病学条件下测试这些策略的效果,此类策略的发展受到了阻碍。在这里,我们提出了一种使用机器人液体处理平台在体外比较替代多药物治疗策略效果的方法。我们使用这个框架来研究耐药性的进化和传播,实施治疗、传播以及患者入院和出院的流行病学人群动态,这些情况可能在医院中观察到。我们进行了长达 40 天的大规模平行实验进化,并补充了一个计算模型来推断潜在的群体动态参数。我们发现,在我们的研究中,联合疗法在最小化耐药性进化和最大化未感染者方面优于单药治疗以及循环和混合治疗,只要没有双重耐药性进入焦点治疗群体。