School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
Nat Commun. 2021 Mar 25;12(1):1856. doi: 10.1038/s41467-021-22147-7.
Electrocatalytic conversion of nitrogen oxides to value-added chemicals is a promising strategy for mitigating the human-caused unbalance of the global nitrogen-cycle, but controlling product selectivity remains a great challenge. Here we show iron-nitrogen-doped carbon as an efficient and durable electrocatalyst for selective nitric oxide reduction into hydroxylamine. Using in operando spectroscopic techniques, the catalytic site is identified as isolated ferrous moieties, at which the rate for hydroxylamine production increases in a super-Nernstian way upon pH decrease. Computational multiscale modelling attributes the origin of unconventional pH dependence to the redox active (non-innocent) property of NO. This makes the rate-limiting NO adsorbate state more sensitive to surface charge which varies with the pH-dependent overpotential. Guided by these fundamental insights, we achieve a Faradaic efficiency of 71% and an unprecedented production rate of 215 μmol cm h at a short-circuit mode in a flow-type fuel cell without significant catalytic deactivation over 50 h operation.
电催化将氮氧化物转化为高附加值化学品是缓解人为造成的全球氮循环失衡的一种很有前景的策略,但控制产物选择性仍然是一个巨大的挑战。在这里,我们展示了铁氮掺杂碳作为一种高效且耐用的电催化剂,可将一氧化氮选择性还原为羟胺。使用原位光谱技术,鉴定出催化活性位为孤立的二价铁部分,在该活性位上,随着 pH 值降低,羟胺生成的速率呈超 Nernst 方式增加。计算多尺度模型将非常规 pH 依赖性的起源归因于 NO 的氧化还原活性(非非均相)性质。这使得限速的 NO 吸附态对随 pH 相关过电势变化的表面电荷更加敏感。根据这些基本见解,我们在无需使用流动型燃料电池中的短路模式在 50 小时的操作中实现了 71%的法拉第效率和前所未有的 215 μmol·cm h 的生产速率,且没有明显的催化失活。