Suppr超能文献

简化对多个背景变量测量不变性的评估:使用正则化调节非线性因子分析检测项目功能差异

Simplifying the Assessment of Measurement Invariance over Multiple Background Variables: Using Regularized Moderated Nonlinear Factor Analysis to Detect Differential Item Functioning.

作者信息

Bauer Daniel J, Belzak William C M, Cole Veronica

机构信息

Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill.

Center for Developmental Science, The University of North Carolina at Chapel Hill.

出版信息

Struct Equ Modeling. 2020;27(1):43-55. doi: 10.1080/10705511.2019.1642754. Epub 2019 Sep 5.

Abstract

Determining whether measures are equally valid for all individuals is a core component of psychometric analysis. Traditionally, the evaluation of measurement invariance (MI) involves comparing independent groups defined by a single categorical covariate (e.g., men and women) to determine if there are any items that display differential item functioning (DIF). More recently, Moderated Nonlinear Factor Analysis (MNLFA) has been advanced as an approach for evaluating MI/DIF simultaneously over multiple background variables, categorical and continuous. Unfortunately, conventional procedures for detecting DIF do not scale well to the more complex MNLFA. The current manuscript therefore proposes a regularization approach to MNLFA estimation that penalizes the likelihood for DIF parameters (i.e., rewarding sparse DIF). This procedure avoids the pitfalls of sequential inference tests, is automated for end users, and is shown to perform well in both a small-scale simulation and an empirical validation study.

摘要

确定测量方法对所有个体是否同样有效是心理测量分析的核心组成部分。传统上,测量不变性(MI)的评估涉及比较由单个分类协变量定义的独立组(例如,男性和女性),以确定是否存在显示差异项目功能(DIF)的项目。最近,调节非线性因子分析(MNLFA)已被提出作为一种同时在多个分类和连续背景变量上评估MI/DIF的方法。不幸的是,检测DIF的传统程序在更复杂的MNLFA上扩展性不佳。因此,当前的手稿提出了一种用于MNLFA估计的正则化方法,该方法对DIF参数的似然性进行惩罚(即奖励稀疏DIF)。此程序避免了顺序推断检验的陷阱,为最终用户实现了自动化,并且在小规模模拟和实证验证研究中均表现良好。

相似文献

3
DIF Statistical Inference Without Knowing Anchoring Items.
Psychometrika. 2023 Dec;88(4):1097-1122. doi: 10.1007/s11336-023-09930-9. Epub 2023 Aug 7.
4
A more general model for testing measurement invariance and differential item functioning.
Psychol Methods. 2017 Sep;22(3):507-526. doi: 10.1037/met0000077. Epub 2016 Jun 6.
6
Bayesian penalty methods for evaluating measurement invariance in moderated nonlinear factor analysis.
Psychol Methods. 2025 Jun;30(3):482-512. doi: 10.1037/met0000552. Epub 2023 Jun 8.
9
The Impact and Detection of Uniform Differential Item Functioning for Continuous Item Response Models.
Educ Psychol Meas. 2023 Oct;83(5):929-952. doi: 10.1177/00131644221111993. Epub 2022 Jul 21.
10
Assessing measurement invariance with moderated nonlinear factor analysis using the R package OpenMx.
Psychol Methods. 2024 Apr;29(2):388-406. doi: 10.1037/met0000501. Epub 2022 Jul 4.

引用本文的文献

2
Evaluating the Performance of a Regularized Differential Item Functioning Method for Testlet-Based Polytomous Items.
Educ Psychol Meas. 2025 May 31:00131644251342512. doi: 10.1177/00131644251342512.
3
Construct Validity and Reliability of the 'Lifestyle (PAHO) in the Adult Population' Questionnaire.
Glob Adv Integr Med Health. 2025 May 5;14:27536130251340403. doi: 10.1177/27536130251340403. eCollection 2025 Jan-Dec.
4
Exploring the Evidence to Interpret Differential Item Functioning via Response Process Data.
Educ Psychol Meas. 2024 Nov 29:00131644241298975. doi: 10.1177/00131644241298975.
6
Modelling nonlinear moderation effects with local structural equation modelling (LSEM): A non-technical introduction.
Int J Psychol. 2025 Feb;60(1):e13259. doi: 10.1002/ijop.13259. Epub 2024 Oct 19.
9
Using Interpretable Machine Learning for Differential Item Functioning Detection in Psychometric Tests.
Appl Psychol Meas. 2024 Jul;48(4-5):167-186. doi: 10.1177/01466216241238744. Epub 2024 Mar 11.

本文引用的文献

1
Recovering Predictor-Criterion Relations Using Covariate-Informed Factor Score Estimates.
Struct Equ Modeling. 2018;25(6):860-875. doi: 10.1080/10705511.2018.1473773. Epub 2018 Jun 12.
2
Anchor Selection Strategies for DIF Analysis: Review, Assessment, and New Approaches.
Educ Psychol Meas. 2015 Feb;75(1):22-56. doi: 10.1177/0013164414529792. Epub 2014 Apr 21.
3
A penalized likelihood method for multi-group structural equation modelling.
Br J Math Stat Psychol. 2018 Nov;71(3):499-522. doi: 10.1111/bmsp.12130. Epub 2018 Mar 3.
4
5
Improving Factor Score Estimation Through the Use of Observed Background Characteristics.
Struct Equ Modeling. 2016;23(6):827-844. doi: 10.1080/10705511.2016.1220839. Epub 2016 Sep 9.
6
Latent Variable Selection for Multidimensional Item Response Theory Models via [Formula: see text] Regularization.
Psychometrika. 2016 Dec;81(4):921-939. doi: 10.1007/s11336-016-9529-6. Epub 2016 Oct 3.
7
Regularized Structural Equation Modeling.
Struct Equ Modeling. 2016;23(4):555-566. doi: 10.1080/10705511.2016.1154793. Epub 2016 Apr 12.
8
A more general model for testing measurement invariance and differential item functioning.
Psychol Methods. 2017 Sep;22(3):507-526. doi: 10.1037/met0000077. Epub 2016 Jun 6.
9
A Cautionary Note on Using G(2)(dif) to Assess Relative Model Fit in Categorical Data Analysis.
Multivariate Behav Res. 2006 Mar 1;41(1):55-64. doi: 10.1207/s15327906mbr4101_4.
10
Using Lasso for Predictor Selection and to Assuage Overfitting: A Method Long Overlooked in Behavioral Sciences.
Multivariate Behav Res. 2015;50(5):471-84. doi: 10.1080/00273171.2015.1036965.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验