Suppr超能文献

连接组学预测果蝇大脑的静息状态功能连接。

The connectome predicts resting-state functional connectivity across the Drosophila brain.

机构信息

Department of Neurobiology, Stanford University, Stanford, CA 94103, USA.

Department of Neurobiology, Stanford University, Stanford, CA 94103, USA.

出版信息

Curr Biol. 2021 Jun 7;31(11):2386-2394.e3. doi: 10.1016/j.cub.2021.03.004. Epub 2021 Mar 25.

Abstract

Anatomical connectivity can constrain both a neural circuit's function and its underlying computation. This principle has been demonstrated for many small, defined neural circuits. For example, connectome reconstructions have informed models for direction selectivity in the vertebrate retina as well as the Drosophila visual system. In these cases, the circuit in question is relatively compact, well-defined, and has known functions. However, how the connectome constrains global properties of large-scale networks, across multiple brain regions or the entire brain, is incompletely understood. As the availability of partial or complete connectomes expands to more systems and species it becomes critical to understand how this detailed anatomical information can inform our understanding of large-scale circuit function. Here, we use data from the Drosophila connectome in conjunction with whole-brain in vivo imaging to relate structural and functional connectivity in the central brain. We find a strong relationship between resting-state functional correlations and direct region-to-region structural connectivity. We find that the relationship between structure and function varies across the brain, with some regions displaying a tight correspondence between structural and functional connectivity whereas others, including the mushroom body, are more strongly dependent on indirect connections. Throughout this work, we observe features of structural and functional networks in Drosophila that are strikingly similar to those seen in mammalian cortex, including in the human brain. Given the vast anatomical and functional differences between Drosophila and mammalian nervous systems, these observations suggest general principles that govern brain structure, function, and the relationship between the two.

摘要

解剖连接性可以约束神经回路的功能及其潜在的计算。这一原则已经在许多小而明确的神经回路中得到了证明。例如,连接组重建为脊椎动物视网膜和果蝇视觉系统中的方向选择性模型提供了信息。在这些情况下,所讨论的回路相对紧凑、明确,并且具有已知的功能。然而,连接组如何约束跨多个脑区或整个大脑的大规模网络的全局属性,还不完全清楚。随着部分或完整连接组在更多系统和物种中的可用性的扩展,了解如何利用这种详细的解剖学信息来帮助我们理解大规模回路功能变得至关重要。在这里,我们使用果蝇连接组的数据结合全脑在体成像来研究中枢脑的结构和功能连接。我们发现静息状态功能相关性与直接的区域间结构连接之间存在很强的关系。我们发现,结构和功能之间的关系在大脑中是不同的,一些区域在结构和功能连接之间存在紧密的对应关系,而其他区域,包括蘑菇体,则更依赖于间接连接。在整个工作中,我们观察到果蝇的结构和功能网络的特征与哺乳动物皮层中观察到的特征非常相似,包括人类大脑。鉴于果蝇和哺乳动物神经系统之间存在巨大的解剖和功能差异,这些观察结果表明了支配大脑结构、功能以及两者之间关系的一般原则。

相似文献

3
Structural Basis of Large-Scale Functional Connectivity in the Mouse.小鼠大规模功能连接的结构基础
J Neurosci. 2017 Aug 23;37(34):8092-8101. doi: 10.1523/JNEUROSCI.0438-17.2017. Epub 2017 Jul 17.
6
Hierarchical Modular Structure of the Connectome.连接组的层次模块化结构。
J Neurosci. 2023 Sep 13;43(37):6384-6400. doi: 10.1523/JNEUROSCI.0134-23.2023. Epub 2023 Aug 17.

引用本文的文献

1
Bridging complexity through integrative systems neuroscience.通过整合系统神经科学来弥合复杂性
Front Syst Biol. 2024 Nov 6;4:1487298. doi: 10.3389/fsysb.2024.1487298. eCollection 2024.
4
BIFROST: A method for registering diverse imaging datasets of the brain.BIFROST:一种用于注册大脑不同成像数据集的方法。
Proc Natl Acad Sci U S A. 2024 Nov 19;121(47):e2322687121. doi: 10.1073/pnas.2322687121. Epub 2024 Nov 14.
5
Network statistics of the whole-brain connectome of Drosophila.果蝇全脑连接组的网络统计
Nature. 2024 Oct;634(8032):153-165. doi: 10.1038/s41586-024-07968-y. Epub 2024 Oct 2.
7
Outdoor air pollution and brain development in childhood and adolescence.室外空气污染与儿童和青少年的大脑发育。
Trends Neurosci. 2024 Aug;47(8):593-607. doi: 10.1016/j.tins.2024.06.008. Epub 2024 Jul 24.
10
Network Statistics of the Whole-Brain Connectome of ..的全脑连接组的网络统计数据
bioRxiv. 2024 Feb 28:2023.07.29.551086. doi: 10.1101/2023.07.29.551086.

本文引用的文献

2
An unbiased template of the Drosophila brain and ventral nerve cord.果蝇大脑和腹神经索的无偏模板。
PLoS One. 2020 Dec 31;15(12):e0236495. doi: 10.1371/journal.pone.0236495. eCollection 2020.
4
The Mind of a Mouse.《老鼠的思维》
Cell. 2020 Sep 17;182(6):1372-1376. doi: 10.1016/j.cell.2020.08.010.
7
Linking Structure and Function in Macroscale Brain Networks.连接宏观脑网络中的结构与功能
Trends Cogn Sci. 2020 Apr;24(4):302-315. doi: 10.1016/j.tics.2020.01.008. Epub 2020 Feb 24.
8
Whole-animal connectomes of both Caenorhabditis elegans sexes.雌雄同体秀丽隐杆线虫的全动物连接组图谱。
Nature. 2019 Jul;571(7763):63-71. doi: 10.1038/s41586-019-1352-7. Epub 2019 Jul 3.
9
On the nature and use of models in network neuroscience.网络神经科学中模型的本质和用途。
Nat Rev Neurosci. 2018 Sep;19(9):566-578. doi: 10.1038/s41583-018-0038-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验