Department of Neurobiology, Stanford University, Stanford, CA 94305.
Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544.
Proc Natl Acad Sci U S A. 2024 Nov 19;121(47):e2322687121. doi: 10.1073/pnas.2322687121. Epub 2024 Nov 14.
Imaging methods that span both functional measures in living tissue and anatomical measures in fixed tissue have played critical roles in advancing our understanding of the brain. However, making direct comparisons between different imaging modalities, particularly spanning living and fixed tissue, has remained challenging. For example, comparing brain-wide neural dynamics across experiments and aligning such data to anatomical resources, such as gene expression patterns or connectomes, requires precise alignment to a common set of anatomical coordinates. However, reaching this goal is difficult because registering in vivo functional imaging data to ex vivo reference atlases requires accommodating differences in imaging modality, microscope specification, and sample preparation. We overcome these challenges in by building an in vivo reference atlas from multiphoton-imaged brains, called the Functional Atlas. We then develop a registration pipeline, BrIdge For Registering Over Statistical Templates (BIFROST), for transforming neural imaging data into this common space and for importing ex vivo resources such as connectomes. Using genetically labeled cell types as ground truth, we demonstrate registration with a precision of less than 10 microns. Overall, BIFROST provides a pipeline for registering functional imaging datasets in the fly, both within and across experiments.
在推进我们对大脑的理解方面,跨越活体组织中的功能测量和固定组织中的解剖学测量的成像方法发挥了关键作用。然而,在不同的成像模式之间进行直接比较,特别是跨越活体和固定组织,仍然具有挑战性。例如,要比较不同实验中的全脑神经动力学,并将这些数据与基因表达模式或连接组等解剖学资源对齐,就需要精确地对齐到一组共同的解剖学坐标。然而,实现这一目标非常困难,因为将活体功能成像数据注册到离体参考图谱需要适应成像模式、显微镜规格和样本制备的差异。我们通过构建一个名为“Functional Atlas”的多光子成像大脑的活体参考图谱,在[1]中克服了这些挑战。然后,我们开发了一个注册管道“Bridge For Registering Over Statistical Templates”(BIFROST),用于将神经成像数据转换到这个共同的空间,并导入连接组等离体资源。使用基因标记的细胞类型作为地面实况,我们证明了注册的精度小于 10 微米。总的来说,BIFROST 为在果蝇中注册功能成像数据集提供了一个在实验内和实验间都适用的管道。