Opt Express. 2021 Feb 1;29(3):3269-3283. doi: 10.1364/OE.416537.
Distributed acoustic sensors (DASs) have the capability of registering faint vibrations with high spatial resolution along the sensing fiber. Advanced algorithms are important for DAS in many applications since they can help extract and classify the unique signatures of different types of vibration events. Deep convolutional neural networks (CNNs), which have powerful spectro-temporal feature learning capability, are well suited for event classification in DAS. Generally, these data-driven methods are highly dependent on the availability of large quantities of training data for learning a mapping from input to output. In this work, to fully utilize the collected information and maximize the power of CNNs, we propose a method to enlarge the useful dataset for CNNs from two aspects. First, we propose an intensity and phase stacked CNN (IP-CNN) to utilize both the intensity and phase information from a DAS with coherent detection. Second, we propose to use data augmentation to further increase the training dataset size. The influence of different data augmentation methods on the performance of the proposed CNN architecture is thoroughly investigated. The experimental results show that the proposed IP-CNN with data augmentation produces a classification accuracy of 88.2% on our DAS dataset with 1km sensing length. This indicates that the usage of both intensity and phase information together with the enlarged training dataset after data augmentation can greatly improve the classification accuracy, which is useful for DAS pattern recognition in real applications.
分布式声学传感器 (DAS) 具有沿传感光纤以高空间分辨率记录微弱振动的能力。先进的算法对于许多应用中的 DAS 非常重要,因为它们可以帮助提取和分类不同类型振动事件的独特特征。具有强大的时频谱特征学习能力的深度卷积神经网络 (CNN) 非常适合 DAS 中的事件分类。通常,这些数据驱动的方法高度依赖于大量训练数据的可用性,以便从输入到输出学习映射。在这项工作中,为了充分利用收集到的信息并最大限度地发挥 CNN 的功能,我们提出了一种从两个方面扩大 CNN 有用数据集的方法。首先,我们提出了一种强度和相位堆叠 CNN(IP-CNN),以利用相干检测的 DAS 的强度和相位信息。其次,我们建议使用数据增强进一步增加训练数据集的大小。彻底研究了不同的数据增强方法对所提出的 CNN 架构性能的影响。实验结果表明,在我们具有 1km 传感长度的 DAS 数据集上,使用数据增强的 IP-CNN 可产生 88.2%的分类准确率。这表明,同时使用强度和相位信息以及数据增强后的扩充训练数据集可以大大提高分类准确率,这对于实际应用中的 DAS 模式识别非常有用。