Suppr超能文献

由于较小的纤维束神经外膜较薄,横截面积较小,因此使用袖带电极时其激活阈值较低。

Fibers in smaller fascicles have lower activation thresholds with cuff electrodes due to thinner perineurium and smaller cross-sectional area.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America.

Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America.

出版信息

J Neural Eng. 2023 Apr 4;20(2). doi: 10.1088/1741-2552/acc42b.

Abstract

. In nerve stimulation therapies, fibers in larger fascicles generally have higher activation thresholds, but the mechanisms are not well understood. We implemented and analyzed computational models to uncover the effects of morphological parameters on activation thresholds.. We implemented finite element models of human vagus nerve stimulation to quantify the effects of morphological parameters on thresholds in realistic nerves. We also implemented simplified models to isolate effects of perineurium thickness, endoneurium diameter, fiber diameter, and fascicle location on current density, potential distributions (), and activation thresholds across cuff geometries and stimulation waveforms. Usingfrom each finite element model, we simulated activation thresholds in biophysical cable models of mammalian axons.. Perineurium thickness increases with fascicle diameter, and both thicker perineurium and larger endoneurial diameter contributed to higher activation thresholds via lower peak and broader longitudinal potentials. Thicker perineurium caused less current to enter the fascicle transversely, decreasing peak. Thicker perineurium also inhibited current from leaving the fascicle, causing more constant longitudinal current density, broadening. With increasing endoneurial diameter, intrafascicular volume increased faster than surface area, thereby decreasing intrafascicular current density and peak. Additionally, larger fascicles have greater cross-sectional area, thereby facilitating longitudinal intrafascicular current flow and broadening. A large neighboring fascicle could increase activation thresholds, and for a given fascicle, fiber diameter had the greatest effect on thresholds, followed by fascicle diameter, and lastly, fascicle location within the epineurium. The circumneural cuff elicited robust activation across the nerve, whereas a bipolar transverse cuff with small contacts delivering a pseudo-monophasic waveform enabled more selective activation across fiber diameters and locations.. Our computational studies provide mechanistic understanding of neural responses across relevant morphological parameters of peripheral nerves, thereby informing rational design of effective therapies.

摘要

在神经刺激疗法中,较大纤维束中的纤维通常具有较高的激活阈值,但机制尚不清楚。我们实施并分析了计算模型,以揭示形态参数对激活阈值的影响。

我们实施了人类迷走神经刺激的有限元模型,以量化形态参数对真实神经中阈值的影响。我们还实施了简化模型,以隔离神经外膜厚度、神经内膜直径、纤维直径和纤维束位置对电流密度、势分布()和袖口几何形状和刺激波形跨激活阈值的影响。使用从每个有限元模型中提取的,我们模拟了哺乳动物轴突生物物理电缆模型中的激活阈值。

神经外膜厚度随纤维束直径增加,较厚的神经外膜和较大的神经内膜直径通过降低峰值和更宽的纵向势导致更高的激活阈值。较厚的神经外膜导致较少的电流横向进入纤维束,从而降低峰值。较厚的神经外膜还抑制电流离开纤维束,导致更恒定的纵向电流密度,从而变宽。随着神经内膜直径的增加,纤维束内的体积增加速度快于表面积,从而降低纤维束内的电流密度和峰值。此外,较大的纤维束具有更大的横截面积,从而促进了纵向纤维束内的电流流动和变宽。较大的相邻纤维束可能会增加激活阈值,并且对于给定的纤维束,纤维直径对阈值的影响最大,其次是纤维束直径,最后是神经外膜内的纤维束位置。环形神经袖口在神经上产生了强大的激活作用,而具有小接触点的双极横向袖口施加伪单相波形则能够更有选择性地激活不同纤维直径和位置的纤维。

我们的计算研究提供了对周围神经相关形态参数的神经反应的机制理解,从而为有效治疗的合理设计提供了信息。

相似文献

2
On the parameters used in finite element modeling of compound peripheral nerves.
J Neural Eng. 2019 Feb;16(1):016007. doi: 10.1088/1741-2552/aaeb0c. Epub 2018 Dec 3.
3
Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat.
Front Neurosci. 2020 Nov 4;14:601479. doi: 10.3389/fnins.2020.601479. eCollection 2020.
4
Fascicular perineurium thickness, size, and position affect model predictions of neural excitation.
IEEE Trans Neural Syst Rehabil Eng. 2008 Dec;16(6):572-81. doi: 10.1109/TNSRE.2008.2010348.
6
Fascicle specific targeting for selective peripheral nerve stimulation.
J Neural Eng. 2019 Nov 11;16(6):066040. doi: 10.1088/1741-2552/ab4370.
7
Characterization of the electrical properties of mammalian peripheral nerve laminae.
Artif Organs. 2023 Apr;47(4):705-720. doi: 10.1111/aor.14500. Epub 2023 Jan 31.
8
Directed stimulation with interfascicular interfaces for peripheral nerve stimulation.
J Neural Eng. 2021 Nov 12;18(6). doi: 10.1088/1741-2552/ac33e8.

引用本文的文献

1
Scaling of vagus nerve stimulation parameters does not achieve equivalent nerve responses across species.
Bioelectron Med. 2025 May 16;11(1):11. doi: 10.1186/s42234-025-00174-9.
2
Phosphotungstic Acid Staining to Visualize the Vagus Nerve Perineurium Using Micro-CT.
J Neuroimaging. 2025 Mar-Apr;35(2):e70040. doi: 10.1111/jon.70040.
3
The physiology, anatomy and stimulation of the vagus nerve in epilepsy.
J Physiol. 2025 Apr;603(8):2201-2217. doi: 10.1113/JP287164. Epub 2025 Mar 9.
4
Computational modeling of autonomic nerve stimulation: Vagus et al.
Curr Opin Biomed Eng. 2024 Dec;32. doi: 10.1016/j.cobme.2024.100557. Epub 2024 Aug 24.
6
Highly efficient modeling and optimization of neural fiber responses to electrical stimulation.
Nat Commun. 2024 Aug 31;15(1):7597. doi: 10.1038/s41467-024-51709-8.
7
Multi-Channel Microscale Nerve Cuffs for Spatially Selective Neuromodulation.
Micromachines (Basel). 2024 Aug 15;15(8):1036. doi: 10.3390/mi15081036.
9
Deep-learning segmentation of fascicles from microCT of the human vagus nerve.
Front Neurosci. 2023 May 10;17:1169187. doi: 10.3389/fnins.2023.1169187. eCollection 2023.

本文引用的文献

2
Fascicles split or merge every ∼560 microns within the human cervical vagus nerve.
J Neural Eng. 2022 Nov 3;19(5). doi: 10.1088/1741-2552/ac9643.
4
Selective Neuromodulation of the Vagus Nerve.
Front Neurosci. 2021 May 24;15:685872. doi: 10.3389/fnins.2021.685872. eCollection 2021.
6
Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat.
Front Neurosci. 2020 Nov 4;14:601479. doi: 10.3389/fnins.2020.601479. eCollection 2020.
7
Mechanism of Peripheral Nerve Stimulation in Chronic Pain.
Pain Med. 2020 Aug 1;21(Suppl 1):S6-S12. doi: 10.1093/pm/pnaa164.
8
On the parameters used in finite element modeling of compound peripheral nerves.
J Neural Eng. 2019 Feb;16(1):016007. doi: 10.1088/1741-2552/aaeb0c. Epub 2018 Dec 3.
9
Modeling Current Sources for Neural Stimulation in COMSOL.
Front Comput Neurosci. 2018 Jun 8;12:40. doi: 10.3389/fncom.2018.00040. eCollection 2018.
10
A review of vagus nerve stimulation as a therapeutic intervention.
J Inflamm Res. 2018 May 16;11:203-213. doi: 10.2147/JIR.S163248. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验