Suppr超能文献

基于患者问卷和血液检测结果,利用随机森林分类器对中重度银屑病窄谱中波紫外线光疗效果进行先验估计。

A Priori Estimation of the Narrow-Band UVB Phototherapy Outcome for Moderate-to-Severe Psoriasis Based on the Patients' Questionnaire and Blood Tests Using Random Forest Classifier.

作者信息

Narbutt Joanna, Krzyścin Janusz, Sobolewski Piotr, Skibińska Małgorzata, Noweta Marcin, Owczarek Witold, Rajewska-Więch Bonawentura, Lesiak Aleksandra

机构信息

Department of Dermatology, Pediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland.

Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland.

出版信息

Clin Cosmet Investig Dermatol. 2021 Mar 18;14:253-259. doi: 10.2147/CCID.S296604. eCollection 2021.

Abstract

BACKGROUND

Nowadays, patients with moderate-to-severe psoriasis are treated with conventional immunosuppressants or with new biological agents. Phototherapy is the first-line treatment for patients in whom topical therapy is insufficient. Although numerous studies have been carried out, it is still difficult to predict the outcome of phototherapy in individual patients.

METHODS

Prior to standard narrow band (NB) ultraviolet B (UVB) phototherapy, the patients filled out a questionnaire about personal life and health status. Several standard blood tests, including selected cytokine levels, were performed before and after a course of 20 NB-UVB treatments. The questionnaire answers, results of the blood tests, and treatment outcomes were analyzed using an artificial intelligence approach-the random forest (RF) classification tool.

RESULTS

A total of 82 participants with moderate-to-severe psoriasis were enrolled. Prior to starting phototherapy, the patients with expected good outcome from the phototherapy, shorter remission, and quitting a possible second course of the NB-UVB treatment could be identified by the RF classifier with sensitivity over 84%, and accuracy of 75%, 85%, and 79%, respectively. The inclusion of cytokine data did not improve the performance of the RF classifier.

CONCLUSION

This approach offers help in making clinical decisions by identifying psoriatic patients in whom phototherapy will significantly improve their skin, or those in whom other therapies should be recommended beforehand.

摘要

背景

如今,中重度银屑病患者接受传统免疫抑制剂或新型生物制剂治疗。光疗是局部治疗不足患者的一线治疗方法。尽管已经开展了大量研究,但仍难以预测个体患者光疗的效果。

方法

在标准窄谱(NB)紫外线B(UVB)光疗前,患者填写一份关于个人生活和健康状况的问卷。在20次NB-UVB治疗疗程前后进行多项标准血液检查,包括选定的细胞因子水平检测。使用人工智能方法——随机森林(RF)分类工具对问卷答案、血液检查结果和治疗结果进行分析。

结果

共纳入82例中重度银屑病患者。在开始光疗前,RF分类器能够识别出光疗预期效果良好、缓解期较短以及可能放弃NB-UVB第二疗程治疗的患者,其灵敏度超过84%,准确率分别为75%、85%和79%。纳入细胞因子数据并未提高RF分类器的性能。

结论

这种方法有助于做出临床决策,识别出光疗能显著改善皮肤状况的银屑病患者,或那些应预先推荐其他治疗方法的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d330/7987278/c84a19c79c53/CCID-14-253-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验