Suppr超能文献

利用多重纳米孔测序进行血清型预测的评估

Evaluation of Serotype Prediction With Multiplex Nanopore Sequencing.

作者信息

Wu Xingwen, Luo Hao, Xu Feng, Ge Chongtao, Li Shaoting, Deng Xiangyu, Wiedmann Martin, Baker Robert C, Stevenson Abigail, Zhang Guangtao, Tang Silin

机构信息

Mars Global Food Safety Center, Beijing, China.

Center for Food Safety, University of Georgia, Griffin, GA, United States.

出版信息

Front Microbiol. 2021 Mar 10;12:637771. doi: 10.3389/fmicb.2021.637771. eCollection 2021.

Abstract

The use of whole genome sequencing (WGS) data generated by the long-read sequencing platform Oxford Nanopore Technologies (ONT) has been shown to provide reliable results for serotype prediction in a previous study. To further meet the needs of industry for accurate, rapid, and cost-efficient confirmation and serotype classification, we evaluated the serotype prediction accuracy of using WGS data from multiplex ONT sequencing with three, four, five, seven, or ten isolates (each isolate represented one serotype) pooled in one R9.4.1 flow cell. Each multiplexing strategy was repeated with five flow cells, and the loaded samples were sequenced simultaneously in a GridION sequencer for 48 h. serotype prediction was performed using both SeqSero2 (for raw reads and genome assemblies) and SISTR (for genome assemblies) software suites. An average of 10.63 Gbp of clean sequencing data was obtained per flow cell. We found that the unevenness of data yield among each multiplexed isolate was a major barrier for shortening sequencing time. Using genome assemblies, both SeqSero2 and SISTR accurately predicted all the multiplexed isolates under each multiplexing strategy when depth of genome coverage ≥50× for each isolate. We identified that cross-sample barcode assignment was a major cause of prediction errors when raw sequencing data were used for prediction. This study also demonstrated that, (i) sequence data generated by ONT multiplex sequencing can be used to simultaneously predict serotype for three to ten isolates, (ii) with three to ten isolates multiplexed, genome coverage at ≥50× per isolate was obtained within an average of 6 h of ONT multiplex sequencing, and (iii) with five isolates multiplexed, the cost per isolate might be reduced to 23% of that incurred with single ONT sequencing. This study is a starting point for future validation of multiplex ONT WGS as a cost-efficient and rapid confirmation and serotype classification tool for the food industry.

摘要

在之前的一项研究中,使用长读长测序平台牛津纳米孔技术公司(ONT)生成的全基因组测序(WGS)数据已被证明可为血清型预测提供可靠结果。为了进一步满足行业对准确、快速且经济高效的确认和血清型分类的需求,我们评估了在一个R9.4.1流动槽中汇集三个、四个、五个、七个或十个分离株(每个分离株代表一种血清型)的多重ONT测序WGS数据用于血清型预测的准确性。每种多重策略在五个流动槽上重复进行,加载的样本在GridION测序仪中同时测序48小时。使用SeqSero2(用于原始读数和基因组组装)和SISTR(用于基因组组装)软件套件进行血清型预测。每个流动槽平均获得10.63 Gbp的清洁测序数据。我们发现,每个多重分离株之间数据产量的不均匀性是缩短测序时间的主要障碍。使用基因组组装,当每个分离株的基因组覆盖深度≥50×时,SeqSero2和SISTR在每种多重策略下都能准确预测所有多重分离株。我们确定,当使用原始测序数据进行预测时,跨样本条形码分配是预测错误的主要原因。本研究还表明,(i)ONT多重测序生成的序列数据可用于同时预测三到十个分离株的血清型,(ii)在三到十个分离株进行多重测序时,ONT多重测序平均6小时内每个分离株的基因组覆盖度可达到≥50×,(iii)在五个分离株进行多重测序时,每个分离株的成本可能降至单次ONT测序成本的23%。本研究是未来验证多重ONT WGS作为食品行业经济高效且快速的确认和血清型分类工具的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4197/7987803/a11bc73d312b/fmicb-12-637771-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验