Suppr超能文献

常规胸部CT中左心房容积作为心房颤动生物标志物:深度学习方法

Left Atrial Volume as a Biomarker of Atrial Fibrillation at Routine Chest CT: Deep Learning Approach.

作者信息

Bratt Alex, Guenther Zachary, Hahn Lewis D, Kadoch Michael, Adams Patrick L, Leung Ann N C, Guo Haiwei H

机构信息

Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305 (A.B., Z.G., L.D.H., P.L.A., A.N.C.L., H.H.G.); and Department of Radiology, University of California at Davis, Sacramento, Calif (M.K.).

出版信息

Radiol Cardiothorac Imaging. 2019 Dec 19;1(5):e190057. doi: 10.1148/ryct.2019190057. eCollection 2019 Dec.

Abstract

PURPOSE

To test the performance of a deep learning (DL) model in predicting atrial fibrillation (AF) at routine nongated chest CT.

MATERIALS AND METHODS

A retrospective derivation cohort (mean age, 64 years; 51% female) consisting of 500 consecutive patients who underwent routine chest CT served as the training set for a DL model that was used to measure left atrial volume. The model was then used to measure atrial size for a separate 500-patient validation cohort (mean age, 61 years; 46% female), in which the AF status was determined by performing a chart review. The performance of automated atrial size as a predictor of AF was evaluated by using a receiver operating characteristic analysis.

RESULTS

There was good agreement between manual and model-generated segmentation maps by all measures of overlap and surface distance (mean Dice = 0.87, intersection over union = 0.77, Hausdorff distance = 4.36 mm, average symmetric surface distance = 0.96 mm), and agreement was slightly but significantly greater than that between human observers (mean Dice = 0.85 [automated] vs 0.84 [manual]; = .004). Atrial volume was a good predictor of AF in the validation cohort (area under the receiver operating characteristic curve = 0.768) and was an independent predictor of AF, with an age-adjusted relative risk of 2.9.

CONCLUSION

Left atrial volume is an independent predictor of the AF status as measured at routine nongated chest CT. Deep learning is a suitable tool for automated measurement.© RSNA, 2019See also the commentary by de Roos and Tao in this issue.

摘要

目的

测试深度学习(DL)模型在常规非门控胸部CT中预测心房颤动(AF)的性能。

材料与方法

一个回顾性推导队列(平均年龄64岁;51%为女性),由500例连续接受常规胸部CT检查的患者组成,作为用于测量左心房容积的DL模型的训练集。然后使用该模型测量另一个由500例患者组成的验证队列(平均年龄61岁;46%为女性)的心房大小,通过查阅病历确定该队列中的AF状态。通过使用受试者操作特征分析评估自动测量的心房大小作为AF预测指标的性能。

结果

通过所有重叠和表面距离测量方法,手动分割图与模型生成的分割图之间具有良好的一致性(平均Dice系数 = 0.87,交并比 = 0.77,豪斯多夫距离 = 4.36 mm,平均对称表面距离 = 0.96 mm),且一致性略高于但显著高于人类观察者之间的一致性(平均Dice系数 = 0.85 [自动] 对0.84 [手动];P = 0.004)。在验证队列中,心房容积是AF的良好预测指标(受试者操作特征曲线下面积 = 0.768),并且是AF的独立预测指标,年龄调整后的相对风险为2.9。

结论

在常规非门控胸部CT测量中,左心房容积是AF状态的独立预测指标。深度学习是自动测量的合适工具。© RSNA,2019另见本期德罗os和陶的评论。

相似文献

引用本文的文献

2
Predictors of Atrial Fibrillation After Thoracic Radiotherapy.胸部放疗后房颤的预测因素
JACC CardioOncol. 2024 Nov 5;6(6):935-945. doi: 10.1016/j.jaccao.2024.08.007. eCollection 2024 Dec.
7
Applications of multimodality imaging for left atrial catheter ablation.多模态影像在左心房导管消融中的应用。
Eur Heart J Cardiovasc Imaging. 2021 Dec 18;23(1):31-41. doi: 10.1093/ehjci/jeab205.

本文引用的文献

4
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
8
Stroke prevention in atrial fibrillation.心房颤动的卒中预防。
Lancet. 2016 Aug 20;388(10046):806-17. doi: 10.1016/S0140-6736(16)31257-0.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验