Suppr超能文献

2019冠状病毒病在胸部CT上的表现及对胸部X线解读的意义

Extension of Coronavirus Disease 2019 on Chest CT and Implications for Chest Radiographic Interpretation.

作者信息

Choi Hyewon, Qi Xiaolong, Yoon Soon Ho, Park Sang Joon, Lee Kyung Hee, Kim Jin Yong, Lee Young Kyung, Ko Hongseok, Kim Ki Hwan, Park Chang Min, Kim Yun-Hyeon, Lei Junqiang, Hong Jung Hee, Kim Hyungjin, Hwang Eui Jin, Yoo Seung Jin, Nam Ju Gang, Lee Chang Hyun, Goo Jin Mo

机构信息

Department of Radiology, Seoul National College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea (H.C., S.H.Y., S.J.P., C.M.P., J.H.L., H. Kim, E.J.H., S.J.Y., J.G.N., C.H.L., J.M.G.); CHESS Center, The First Hospital of Lanzhou University, Lanzhou, China (Q.X., J.L.); Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea (K.H.L.); Department of Internal Medicine, Incheon Medical Center, Incheon, Korea (J.Y.K.); Department of Radiology, Seoul Medical Center, Seoul, Korea (Y.K.L.); Department of Radiology, National Medical Center, Seoul, Korea (H. Ko); Department of Radiology, Myongji Hospital, Gyeonggi-do, Korea (K.H.K.); and Department of Radiology, Chonnam National University Hospital, Gwanju, Korea (Y.H.K.).

出版信息

Radiol Cardiothorac Imaging. 2020 Mar 30;2(2):e200107. doi: 10.1148/ryct.2020200107. eCollection 2020 Apr.

Abstract

PURPOSE

To study the extent of pulmonary involvement in coronavirus 19 (COVID-19) with quantitative CT and to assess the impact of disease burden on opacity visibility on chest radiographs.

MATERIALS AND METHODS

This retrospective study included 20 pairs of CT scans and same-day chest radiographs from 17 patients with COVID-19, along with 20 chest radiographs of controls. All pulmonary opacities were semiautomatically segmented on CT images, producing an anteroposterior projection image to match the corresponding frontal chest radiograph. The quantitative CT lung opacification mass (QCT) was defined as (opacity attenuation value + 1000 HU)/1000 × 1.065 (g/mL) × combined volume (cm) of the individual opacities. Eight thoracic radiologists reviewed the 40 radiographs, and a receiver operating characteristic curve analysis was performed for the detection of lung opacities. Logistic regression analysis was performed to identify factors affecting opacity visibility on chest radiographs.

RESULTS

The mean QCT per patient was 72.4 g ± 120.8 (range, 0.7-420.7 g), and opacities occupied 3.2% ± 5.8 (range, 0.1%-19.8%) and 13.9% ± 18.0 (range, 0.5%-57.8%) of the lung area on the CT images and projected images, respectively. The radiographs had a median sensitivity of 25% and specificity of 90% among radiologists. Nineteen of 186 opacities were visible on chest radiographs, and a median area of 55.8% of the projected images was identifiable on radiographs. Logistic regression analysis showed that QCT ( < .001) and combined opacity volume ( < .001) significantly affected opacity visibility on radiographs.

CONCLUSION

QCT varied among patients with COVID-19. Chest radiographs had high specificity for detecting lung opacities in COVID-19 but a low sensitivity. QCT and combined opacity volume were significant determinants of opacity visibility on radiographs.Earlier incorrect version appeared online. This article was corrected on April 6, 2020 and December 14, 2020.© RSNA, 2020.

摘要

目的

采用定量CT研究新型冠状病毒肺炎(COVID-19)患者肺部受累程度,并评估疾病负担对胸部X线片上实变影显示的影响。

材料与方法

这项回顾性研究纳入了17例COVID-19患者的20对CT扫描图像及同日胸部X线片,以及20例对照者的胸部X线片。在CT图像上对所有肺部实变影进行半自动分割,生成前后位投影图像以匹配相应的胸部正位X线片。定量CT肺实变质量(QCT)定义为(实变影衰减值 + 1000 HU)/1000 × 1.065(g/mL)× 各实变影的总体积(cm)。8名胸放射科医生对40张X线片进行阅片,并对肺部实变影的检测进行了受试者操作特征曲线分析。采用逻辑回归分析确定影响胸部X线片上实变影显示的因素。

结果

每位患者的平均QCT为72.4 g ± 120.8(范围,0.7 - 420.7 g),实变影在CT图像和投影图像上分别占肺面积的3.2% ± 5.8(范围,0.1% - 19.8%)和13.9% ± 18.0(范围,0.5% - 57.8%)。在放射科医生中,X线片的中位敏感度为25%,特异度为90%。胸部X线片上可显示186处实变影中的19处,X线片上可识别投影图像中位面积的55.8%。逻辑回归分析显示,QCT(< .001)和实变影总体积(< .001)显著影响X线片上实变影的显示。

结论

COVID-19患者的QCT存在差异。胸部X线片检测COVID-19肺部实变影的特异度高,但敏感度低。QCT和实变影总体积是X线片上实变影显示的重要决定因素。早期错误版本已在线发布。本文于2020年4月6日和2020年12月14日进行了更正。© RSNA,2020。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a08/7977722/138795f029df/ryct.2020200107.fig1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验