Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, Italy.
School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, Milan, Italy.
Radiol Med. 2022 Sep;127(9):960-972. doi: 10.1007/s11547-022-01518-0. Epub 2022 Aug 29.
To develop and validate an effective and user-friendly AI platform based on a few unbiased clinical variables integrated with advanced CT automatic analysis for COVID-19 patients' risk stratification.
In total, 1575 consecutive COVID-19 adults admitted to 16 hospitals during wave 1 (February 16-April 29, 2020), submitted to chest CT within 72 h from admission, were retrospectively enrolled. In total, 107 variables were initially collected; 64 extracted from CT. The outcome was survival. A rigorous AI model selection framework was adopted for models selection and automatic CT data extraction. Model performances were compared in terms of AUC. A web-mobile interface was developed using Microsoft PowerApps environment. The platform was externally validated on 213 COVID-19 adults prospectively enrolled during wave 2 (October 14-December 31, 2020).
The final cohort included 1125 patients (292 non-survivors, 26%) and 24 variables. Logistic showed the best performance on the complete set of variables (AUC = 0.839 ± 0.009) as in models including a limited set of 13 and 5 variables (AUC = 0.840 ± 0.0093 and AUC = 0.834 ± 0.007). For non-inferior performance, the 5 variables model (age, sex, saturation, well-aerated lung parenchyma and cardiothoracic vascular calcium) was selected as the final model and the extraction of CT-derived parameters was fully automatized. The fully automatic model showed AUC = 0.842 (95% CI: 0.816-0.867) on wave 1 and was used to build a 0-100 scale risk score (AI-SCoRE). The predictive performance was confirmed on wave 2 (AUC 0.808; 95% CI: 0.7402-0.8766).
AI-SCoRE is an effective and reliable platform for automatic risk stratification of COVID-19 patients based on a few unbiased clinical data and CT automatic analysis.
开发和验证一种基于少数无偏临床变量并结合先进 CT 自动分析的有效且易于使用的人工智能平台,用于 COVID-19 患者的风险分层。
共回顾性纳入 16 家医院在第 1 波(2020 年 2 月 16 日至 4 月 29 日)期间收治的 1575 例连续 COVID-19 成年患者,这些患者在入院后 72 小时内接受胸部 CT 检查。共收集了 107 个变量,其中 64 个从 CT 中提取。结局是生存。采用严格的 AI 模型选择框架进行模型选择和自动 CT 数据提取。根据 AUC 比较模型性能。使用 Microsoft PowerApps 环境开发了一个网络移动界面。该平台在第 2 波(2020 年 10 月 14 日至 12 月 31 日)期间前瞻性纳入的 213 例 COVID-19 成年患者中进行了外部验证。
最终队列包括 1125 例患者(292 例非幸存者,26%)和 24 个变量。逻辑显示在完整变量集上的表现最佳(AUC=0.839±0.009),在包含有限集的 13 个和 5 个变量的模型中也表现出色(AUC=0.840±0.0093 和 AUC=0.834±0.007)。为了达到非劣效性,选择了包含 5 个变量的模型(年龄、性别、饱和度、充气良好的肺实质和心胸血管钙)作为最终模型,并实现了 CT 衍生参数的完全自动化提取。完全自动化模型在第 1 波的 AUC 为 0.842(95%CI:0.816-0.867),并用于构建 0-100 分风险评分(AI-SCoRE)。在第 2 波得到了验证(AUC 0.808;95%CI:0.7402-0.8766)。
AI-SCoRE 是一种基于少数无偏临床数据和 CT 自动分析的 COVID-19 患者自动风险分层的有效且可靠的平台。