Suppr超能文献

表观扩散系数图纹理分析在宫颈癌中的应用:与组织病理学发现和预后的相关性。

Texture Analysis of Apparent Diffusion Coefficient Maps in Cervical Carcinoma: Correlation with Histopathologic Findings and Prognosis.

机构信息

Departments of Diagnostic Radiology and Nuclear Medicine (I.Y., Y.S., U.T.), Comprehensive Reproductive Medicine (N.O., N.M., K.W., A.W.), Oral and Maxillofacial Radiology (J.S.), and Human Pathology (D.K.), Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.

出版信息

Radiol Imaging Cancer. 2020 May 22;2(3):e190085. doi: 10.1148/rycan.2020190085. eCollection 2020 May.

Abstract

PURPOSE

To determine the feasibility of texture analysis of apparent diffusion coefficient (ADC) maps and to assess the performance of texture analysis and ADC to predict histologic grade, parametrial invasion, lymph node metastasis, International Federation of Gynecology and Obstetrics (FIGO) stage, recurrence, and recurrence-free survival (RFS) in patients with cervical carcinoma.

MATERIALS AND METHODS

This retrospective study included 58 patients with cervical carcinoma who were examined with a 1.5-T MRI system and diffusion-weighted imaging with values of 0 and 1000 sec/mm. Software with volumes of interest on ADC maps was used to extract 45 texture features, including higher-order texture features. Receiver operating characteristic (ROC) analysis was performed to compare the diagnostic performance of ADC map random forest models and of ADC values. Dunnett test, Spearman rank correlation coefficient, Kaplan-Meier analyses, log-rank test, and Cox proportional hazards regression analyses were also used for statistical analyses.

RESULTS

The ADC map random forest models showed a significantly larger area under the ROC curve (AUC) than the AUC of ADC values for predicting high-grade cervical carcinoma ( = .0036), but not for parametrial invasion, lymph node metastasis, stages III-IV, and recurrence ( = .0602, .3176, .0924, and .5633, respectively). The random forest models predicted that the mean RFS rates were significantly shorter for high-grade cervical carcinomas, parametrial invasion, lymph node metastasis, stages III-IV, and recurrence ( = .0405, < .0001, .0344, .0001, and .0015, respectively); the random forest models for parametrial invasion and stages III-IV were more useful than ADC values ( = .0018) for predicting RFS.

CONCLUSION

The ADC map random forest models were more useful for noninvasively evaluating histologic grade, parametrial invasion, lymph node metastasis, FIGO stage, and recurrence and for predicting RFS in patients with cervical carcinoma than were ADC values. Comparative Studies, Genital/Reproductive, MR-Diffusion Weighted Imaging, MR-Imaging, Neoplasms-Primary, Pathology, Pelvis, Tissue Characterization, Uterus© RSNA, 2020See also the commentary by Reinhold and Nougaret in this issue.

摘要

目的

确定表观扩散系数(ADC)图纹理分析的可行性,并评估纹理分析和 ADC 预测宫颈癌组织学分级、宫旁侵犯、淋巴结转移、国际妇产科联合会(FIGO)分期、复发和无复发生存(RFS)的性能。

材料与方法

本回顾性研究纳入 58 例宫颈癌患者,均在 1.5T MRI 系统上进行检查,扩散加权成像 b 值为 0 和 1000 sec/mm²。采用 ADC 图容积感兴趣区软件提取 45 个纹理特征,包括高阶纹理特征。采用受试者工作特征(ROC)分析比较 ADC 图随机森林模型和 ADC 值的诊断性能。Dunnett 检验、Spearman 秩相关系数、Kaplan-Meier 分析、log-rank 检验和 Cox 比例风险回归分析用于统计学分析。

结果

ADC 图随机森林模型预测高级别宫颈癌的 ROC 曲线下面积(AUC)显著大于 ADC 值(=0.0036),但对宫旁侵犯、淋巴结转移、FIGO 分期 III-IV 和复发的 AUC 无显著差异(=0.0602、0.3176、0.0924 和 0.5633)。随机森林模型预测,高级别宫颈癌、宫旁侵犯、淋巴结转移、FIGO 分期 III-IV 和复发患者的平均 RFS 率显著缩短(=0.0405、<0.0001、0.0344、0.0001 和 0.0015);宫旁侵犯和 FIGO 分期 III-IV 的随机森林模型预测 RFS 的效能优于 ADC 值(=0.0018)。

结论

与 ADC 值相比,ADC 图随机森林模型在评估宫颈癌组织学分级、宫旁侵犯、淋巴结转移、FIGO 分期和复发,预测 RFS 方面更有用。比较研究,生殖器官/生殖,MR 扩散加权成像,MR 成像,肿瘤-原发性,病理学,骨盆,组织特征,子宫©RSNA,2020 也见本期 Reinhold 和 Nougaret 的评论。

相似文献

9
Diffusion Kurtosis Imaging in the Assessment of Cervical Carcinoma.弥散峰度成像在宫颈癌评估中的应用。
Acad Radiol. 2020 May;27(5):e94-e101. doi: 10.1016/j.acra.2019.06.022. Epub 2019 Jul 17.

引用本文的文献

10
Radiomic ADC Metrics as a Tool to Better Understand Tumor Biology.放射组学表观扩散系数指标作为深入了解肿瘤生物学的工具
Radiol Imaging Cancer. 2020 May 22;2(3):e200051. doi: 10.1148/rycan.2020200051. eCollection 2020 May.

本文引用的文献

1
Texture Analysis of Imaging: What Radiologists Need to Know.医学影像学中的纹理分析:放射科医师须知。
AJR Am J Roentgenol. 2019 Mar;212(3):520-528. doi: 10.2214/AJR.18.20624. Epub 2019 Jan 15.
6
Responsible Radiomics Research for Faster Clinical Translation.开展负责任的放射组学研究以加速临床转化。
J Nucl Med. 2018 Feb;59(2):189-193. doi: 10.2967/jnumed.117.200501. Epub 2017 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验