Suppr超能文献

基于支持向量机模型,鉴定了白细胞介素 8(IL-8)、心肌营养素蛋白(MSPa)、巨噬细胞移动抑制因子(MIF)、成纤维细胞生长因子 9(FGF-9)、血管生成素 2(ANG-2)和刺鼠相关蛋白(AgRP)用于结直肠癌的诊断。

IL-8, MSPa, MIF, FGF-9, ANG-2 and AgRP collection were identified for the diagnosis of colorectal cancer based on the support vector machine model.

机构信息

Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China.

Department of Oncology and Hematology Surgery, China-Japan Union Hospital, Changchun, Jilin Province, China.

出版信息

Cell Cycle. 2021 Apr;20(8):781-791. doi: 10.1080/15384101.2021.1903208. Epub 2021 Mar 28.

Abstract

Colorectal cancer (CRC) is one of the most common cancer, and the early detection of CRC is essential to improve the survival rate of patients. To identify diagnostic markers for colorectal cancer (CRC) by screening differentially expressed proteins (DEPs) in CRC. The DEPs were initially obtained from 12 CRC samples and 12 healthy control samples, and verification analysis was performed in another 34 CRC samples and 34 normal controls. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment with DEPs was analyzed by the R package clusterProfiler (Version 3.2.11), and the DEP-associated protein-protein interaction (PPI) network was created from the STRING database. Additionally, Support Vector Machine (SVM) model prediction and survival analyses were conducted on the key DEPs. Preliminary screening and functional analysis showed that the DEPs mainly overrepresented in pathways such as cytokine-cytokine receptor interaction, chemokine signaling pathway, Rap1, Ras, and MAPK signaling pathways. The key DEPs, including AgRP, ANG-2, Dtk, EOT3, FGF-4, FGF-9, HCC-4, IL-16, IL-8, MIF, MSPa, TECK, TPO, TRAIL R3, and VEGF-D, were used to construct a custom chip. The drug-gene interaction network suggested that TPO was a key drug target. ROC curve showed the SVM diagnostic model with the DEPs IL-8, MSPa, MIF, FGF-9, ANG-2, and AgRP had better diagnostic performance with an AUC of 0.933. Survival analysis showed the expression of FGF9, TPO, TRAIL R3, Dtk, TECK and FGF4 were associated with prognosis. This study revealed the important serum proteins in the pathogenesis of CRC, which might serve as useful and noninvasive predictors for the diagnosis of CRC.

摘要

结直肠癌(CRC)是最常见的癌症之一,早期发现 CRC 对于提高患者的生存率至关重要。通过筛选 CRC 中差异表达的蛋白质(DEPs)来鉴定结直肠癌(CRC)的诊断标志物。首先从 12 例 CRC 样本和 12 例健康对照样本中获得 DEPs,并在另外 34 例 CRC 样本和 34 例正常对照样本中进行验证分析。使用 R 包 clusterProfiler(版本 3.2.11)对 DEPs 进行京都基因与基因组百科全书(KEGG)通路富集分析,并从 STRING 数据库创建 DEP 相关的蛋白质-蛋白质相互作用(PPI)网络。此外,对关键 DEPs 进行支持向量机(SVM)模型预测和生存分析。初步筛选和功能分析表明,DEPs 主要在细胞因子-细胞因子受体相互作用、趋化因子信号通路、Rap1、Ras 和 MAPK 信号通路等途径中过表达。关键 DEPs,包括 AgRP、ANG-2、Dtk、EOT3、FGF-4、FGF-9、HCC-4、IL-16、IL-8、MIF、MSPa、TECK、TPO、TRAIL R3 和 VEGF-D,用于构建定制芯片。药物-基因相互作用网络表明 TPO 是一个关键的药物靶点。ROC 曲线显示,基于 DEPs IL-8、MSPa、MIF、FGF-9、ANG-2 和 AgRP 的 SVM 诊断模型具有更好的诊断性能,AUC 为 0.933。生存分析表明,FGF9、TPO、TRAIL R3、Dtk、TECK 和 FGF4 的表达与预后相关。本研究揭示了结直肠癌发病机制中的重要血清蛋白,它们可能作为 CRC 诊断的有用且非侵入性预测指标。

相似文献

7
An age stratified analysis of the biomarkers in patients with colorectal cancer.
Sci Rep. 2021 Nov 17;11(1):22464. doi: 10.1038/s41598-021-01850-x.
10
Association Between Genetic Polymorphism of the MIF Gene and Colorectal Cancer in Taiwan.
J Clin Lab Anal. 2015 Jul;29(4):268-74. doi: 10.1002/jcla.21763. Epub 2014 May 19.

本文引用的文献

2
[Liquid biopsy in colorectal cancer : An overview of ctDNA analysis in tumour diagnostics].
Pathologe. 2019 Dec;40(Suppl 3):244-251. doi: 10.1007/s00292-019-00698-3.
3
Machine learning-based coronary artery disease diagnosis: A comprehensive review.
Comput Biol Med. 2019 Aug;111:103346. doi: 10.1016/j.compbiomed.2019.103346. Epub 2019 Jul 4.
5
Id-1 expression in colorectal adenocarcinoma tissues and its clinical significance.
Rev Assoc Med Bras (1992). 2019 Mar;65(3):404-409. doi: 10.1590/1806-9282.65.3.404. Epub 2019 Apr 11.
6
Prognostic impact of telomeric repeat-containing RNA expression on long-term oncologic outcomes in colorectal cancer.
Medicine (Baltimore). 2019 Apr;98(14):e14932. doi: 10.1097/MD.0000000000014932.
7
Bioinformatics Analysis of Key Genes and Pathways in Colorectal Cancer.
J Comput Biol. 2019 Apr;26(4):364-375. doi: 10.1089/cmb.2018.0237. Epub 2019 Feb 27.
8
Clinical utility of circulating tumor DNA for colorectal cancer.
Cancer Sci. 2019 Apr;110(4):1148-1155. doi: 10.1111/cas.13972. Epub 2019 Mar 4.
9
Identification of key genes and pathways involved in microsatellite instability in colorectal cancer.
Mol Med Rep. 2019 Mar;19(3):2065-2076. doi: 10.3892/mmr.2019.9849. Epub 2019 Jan 11.
10
CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer.
World J Gastroenterol. 2018 Nov 14;24(42):4738-4749. doi: 10.3748/wjg.v24.i42.4738.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验