Suppr超能文献

基于合成 MRI 辅助双金字塔网络的男性骨盆 CT 多器官分割

Male pelvic CT multi-organ segmentation using synthetic MRI-aided dual pyramid networks.

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America.

出版信息

Phys Med Biol. 2021 Apr 16;66(8). doi: 10.1088/1361-6560/abf2f9.

Abstract

The delineation of the prostate and organs-at-risk (OARs) is fundamental to prostate radiation treatment planning, but is currently labor-intensive and observer-dependent. We aimed to develop an automated computed tomography (CT)-based multi-organ (bladder, prostate, rectum, left and right femoral heads (RFHs)) segmentation method for prostate radiation therapy treatment planning. The proposed method uses synthetic MRIs (sMRIs) to offer superior soft-tissue information for male pelvic CT images. Cycle-consistent adversarial networks (CycleGAN) were used to generate CT-based sMRIs. Dual pyramid networks (DPNs) extracted features from both CTs and sMRIs. A deep attention strategy was integrated into the DPNs to select the most relevant features from both CTs and sMRIs to identify organ boundaries. The CT-based sMRI generated from our previously trained CycleGAN and its corresponding CT images were inputted to the proposed DPNs to provide complementary information for pelvic multi-organ segmentation. The proposed method was trained and evaluated using datasets from 140 patients with prostate cancer, and were then compared against state-of-art methods. The Dice similarity coefficients and mean surface distances between our results and ground truth were 0.95 ± 0.05, 1.16 ± 0.70 mm; 0.88 ± 0.08, 1.64 ± 1.26 mm; 0.90 ± 0.04, 1.27 ± 0.48 mm; 0.95 ± 0.04, 1.08 ± 1.29 mm; and 0.95 ± 0.04, 1.11 ± 1.49 mm for bladder, prostate, rectum, left and RFHs, respectively. Mean center of mass distances was within 3 mm for all organs. Our results performed significantly better than those of competing methods in most evaluation metrics. We demonstrated the feasibility of sMRI-aided DPNs for multi-organ segmentation on pelvic CT images, and its superiority over other networks. The proposed method could be used in routine prostate cancer radiotherapy treatment planning to rapidly segment the prostate and standard OARs.

摘要

前列腺和危及器官(OARs)的描绘是前列腺放射治疗计划的基础,但目前这项工作既耗费人力,又依赖观察者。我们旨在开发一种基于计算机断层扫描(CT)的多器官(膀胱、前列腺、直肠、左右股骨头(RFHs))分割方法,用于前列腺放射治疗计划。所提出的方法使用合成磁共振成像(sMRI)为男性盆腔 CT 图像提供更好的软组织信息。循环一致性对抗网络(CycleGAN)用于生成基于 CT 的 sMRI。双金字塔网络(DPNs)从 CT 和 sMRI 中提取特征。深度注意策略被整合到 DPNs 中,从 CT 和 sMRI 中选择最相关的特征,以识别器官边界。从我们之前训练的 CycleGAN 生成的基于 CT 的 sMRI 及其相应的 CT 图像被输入到所提出的 DPNs 中,为骨盆多器官分割提供补充信息。所提出的方法使用来自 140 名前列腺癌患者的数据集进行训练和评估,并与最先进的方法进行了比较。我们的结果与真实数据之间的 Dice 相似系数和平均表面距离分别为 0.95±0.05、1.16±0.70mm;0.88±0.08、1.64±1.26mm;0.90±0.04、1.27±0.48mm;0.95±0.04、1.08±1.29mm;0.95±0.04、1.11±1.49mm,分别用于膀胱、前列腺、直肠、左侧和右侧股骨头;所有器官的平均质心距离均在 3mm 以内。我们的结果在大多数评估指标上都明显优于竞争方法。我们证明了 sMRI 辅助 DPNs 用于骨盆 CT 图像多器官分割的可行性,以及其优于其他网络的性能。该方法可用于常规前列腺癌放射治疗计划,以快速分割前列腺和标准 OARs。

相似文献

本文引用的文献

9
Automatic Segmentation of the Prostate on CT Images Using Deep Neural Networks (DNN).基于深度神经网络(DNN)的 CT 图像前列腺自动分割。
Int J Radiat Oncol Biol Phys. 2019 Jul 15;104(4):924-932. doi: 10.1016/j.ijrobp.2019.03.017. Epub 2019 Mar 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验