Suppr超能文献

基于合成 MRI 辅助深度注意全卷积网络的 CT 前列腺分割。

CT prostate segmentation based on synthetic MRI-aided deep attention fully convolution network.

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.

Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.

出版信息

Med Phys. 2020 Feb;47(2):530-540. doi: 10.1002/mp.13933. Epub 2019 Dec 3.

Abstract

PURPOSE

Accurate segmentation of the prostate on computed tomography (CT) for treatment planning is challenging due to CT's poor soft tissue contrast. Magnetic resonance imaging (MRI) has been used to aid prostate delineation, but its final accuracy is limited by MRI-CT registration errors. We developed a deep attention-based segmentation strategy on CT-based synthetic MRI (sMRI) to deal with the CT prostate delineation challenge without MRI acquisition.

METHODS AND MATERIALS

We developed a prostate segmentation strategy which employs an sMRI-aided deep attention network to accurately segment the prostate on CT. Our method consists of three major steps. First, a cycle generative adversarial network was used to estimate an sMRI from CT images. Second, a deep attention fully convolution network was trained based on sMRI and the prostate contours deformed from MRIs. Attention models were introduced to pay more attention to prostate boundary. The prostate contour for a query patient was obtained by feeding the patient's CT images into the trained sMRI generation model and segmentation model.

RESULTS

The segmentation technique was validated with a clinical study of 49 patients by leave-one-out experiments and validated with an additional 50 patients by hold-out test. The Dice similarity coefficient, Hausdorff distance, and mean surface distance indices between our segmented and deformed MRI-defined prostate manual contours were 0.92 ± 0.09, 4.38 ± 4.66, and 0.62 ± 0.89 mm, respectively, with leave-one-out experiments, and were 0.91 ± 0.07, 4.57 ± 3.03, and 0.62 ± 0.65 mm, respectively, with hold-out test.

CONCLUSIONS

We have proposed a novel CT-only prostate segmentation strategy using CT-based sMRI, and validated its accuracy against the prostate contours that were manually drawn on MRI images and deformed to CT images. This technique could provide accurate prostate volume for treatment planning without requiring MRI acquisition, greatly facilitating the routine clinical workflow.

摘要

目的

由于 CT 软组织对比度差,因此对 CT 进行精确的前列腺分割对于治疗计划具有挑战性。磁共振成像(MRI)已用于辅助前列腺描绘,但由于 MRI-CT 配准误差,其最终准确性受到限制。我们开发了一种基于 CT 合成磁共振成像(sMRI)的深度注意分割策略,无需进行 MRI 采集即可解决 CT 前列腺描绘挑战。

方法和材料

我们开发了一种前列腺分割策略,该策略采用 sMRI 辅助深度注意网络在 CT 上准确分割前列腺。我们的方法包括三个主要步骤。首先,使用循环生成对抗网络从 CT 图像估算 sMRI。其次,基于 sMRI 和从 MRI 变形的前列腺轮廓训练深度注意全卷积网络。注意力模型被引入以更关注前列腺边界。通过将患者的 CT 图像输入到训练有素的 sMRI 生成模型和分割模型中,为查询患者获得前列腺轮廓。

结果

通过 49 例患者的留一法实验和 50 例患者的保留法实验对分割技术进行了验证。通过留一法实验,我们分割和变形的 MRI 定义的前列腺手动轮廓之间的 Dice 相似系数,Hausdorff 距离和平均表面距离指数分别为 0.92±0.09,4.38±4.66 和 0.62±0.89mm,而通过保留法实验,这些指数分别为 0.91±0.07,4.57±3.03 和 0.62±0.65mm。

结论

我们提出了一种新颖的基于 CT 的 sMRI 的仅 CT 前列腺分割策略,并根据手动绘制在 MRI 图像上并变形到 CT 图像上的前列腺轮廓验证了其准确性。该技术可以在不进行 MRI 采集的情况下为治疗计划提供准确的前列腺体积,从而极大地促进了常规临床工作流程。

相似文献

引用本文的文献

1
A review of artificial intelligence in brachytherapy.近距离放射治疗中的人工智能综述。
J Appl Clin Med Phys. 2025 Jun;26(6):e70034. doi: 10.1002/acm2.70034. Epub 2025 Feb 27.
10
Adaptive Region-Specific Loss for Improved Medical Image Segmentation.自适应区域特定损失函数提高医学图像分割。
IEEE Trans Pattern Anal Mach Intell. 2023 Nov;45(11):13408-13421. doi: 10.1109/TPAMI.2023.3289667. Epub 2023 Oct 4.

本文引用的文献

4
Automatic Segmentation of the Prostate on CT Images Using Deep Neural Networks (DNN).基于深度神经网络(DNN)的 CT 图像前列腺自动分割。
Int J Radiat Oncol Biol Phys. 2019 Jul 15;104(4):924-932. doi: 10.1016/j.ijrobp.2019.03.017. Epub 2019 Mar 16.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验