Suppr超能文献

具有稳健仿生超亲水聚阳离子水合表面的可生物降解抗生物膜纤维膜输尿管支架,具有协同抗菌和抗蛋白性能。

Biodegradable Anti-Biofilm Fiber-Membrane Ureteral Stent Constructed with a Robust Biomimetic Superhydrophilic Polycationic Hydration Surface Exhibiting Synergetic Antibacterial and Antiprotein Properties.

机构信息

Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.

Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200011, China.

出版信息

Small. 2021 May;17(20):e2006815. doi: 10.1002/smll.202006815. Epub 2021 Mar 30.

Abstract

The biofouling of ureteral stents and subsequent urinary tract infections mainly come from the adsorption and adhesion of proteins and microorganisms and their ensuing proliferation. Although general polycationic surfaces in implants have good antibacterial activities, they suffer from limited durability due to severe protein and bacterial adsorption. Here, a biodegradable and anti-biofilm fiber-membrane structured ureteral stent (FMBUS) with synergetic contact-killing antibacterial activity and antiprotein adsorption is described. The stent is prepared by generating hyperbranched poly(amide-amine)-grafted polydopamine microparticles (≈300 nm) on the surface of fibers by in situ polymerization and Schiff base reactions. The biomimetic surface endows the FMBUS with a positive charge (+21.36 mV) and superhydrophilicity (water contact angle: 0°). As a result, the stents fulfilled the following functions: i) reduced attachment of host protein due to superhydrophilicity (Lysozyme: 92.1%; human serum albumin: 39.4%); ii) high bactericidal activities against contact pathogenic bacteria (contact-killing rate: 99.9999% for both E. coli and S. aureus; antiadhesion rate: 99.2% for E. coli and 99.9999% for S. aureus); iii) biocompatibility in vitro (relative growth rate of L929: >90% on day 3) and in vivo; and iv) gradient biodegradability to avoid a second surgery of stent extraction 1-2 weeks after implantation.

摘要

输尿管支架的生物污垢和随后的尿路感染主要来自于蛋白质和微生物的吸附和黏附及其后续的增殖。虽然植入物中的一般带正电荷表面具有良好的抗菌活性,但由于严重的蛋白质和细菌吸附,它们的耐久性有限。在这里,我们描述了一种具有协同接触杀菌抗菌活性和抗蛋白吸附的可生物降解的抗生物膜纤维膜结构输尿管支架(FMBUS)。该支架是通过在纤维表面原位聚合和席夫碱反应生成超支化聚(酰胺-胺)接枝聚多巴胺微球(≈300nm)制备的。仿生表面赋予 FMBUS 正电荷(+21.36mV)和超亲水性(水接触角:0°)。因此,支架实现了以下功能:i)由于超亲水性,减少了宿主蛋白的附着(溶菌酶:92.1%;人血清白蛋白:39.4%);ii)对接触性致病菌具有高杀菌活性(大肠杆菌和金黄色葡萄球菌的接触杀灭率:99.9999%;大肠杆菌的抗黏附率:99.2%,金黄色葡萄球菌的抗黏附率:99.9999%);iii)体外和体内的生物相容性(第 3 天 L929 的相对增长率:>90%);iv)梯度生物降解性,以避免在植入后 1-2 周进行支架取出的二次手术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验