Suppr超能文献

通过基于共价对接的虚拟筛选发现 SARS-CoV-2 主蛋白酶抑制剂。

Lead Discovery of SARS-CoV-2 Main Protease Inhibitors through Covalent Docking-Based Virtual Screening.

机构信息

DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy.

Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Annunziata, Messina 98168, Italy.

出版信息

J Chem Inf Model. 2021 Apr 26;61(4):2062-2073. doi: 10.1021/acs.jcim.1c00184. Epub 2021 Mar 30.

Abstract

During almost all 2020, coronavirus disease 2019 (COVID-19) pandemic has constituted the major risk for the worldwide health and economy, propelling unprecedented efforts to discover drugs for its prevention and cure. At the end of the year, these efforts have culminated with the approval of vaccines by the American Food and Drug Administration (FDA) and the European Medicines Agency (EMA) giving new hope for the future. On the other hand, clinical data underscore the urgent need for effective drugs to treat COVID-19 patients. In this work, we embarked on a virtual screening campaign against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M chymotrypsin-like cysteine protease employing our in-house database of peptide and non-peptide ligands characterized by different types of warheads acting as Michael acceptors. To this end, we employed the AutoDock4 docking software customized to predict the formation of a covalent adduct with the target protein. verification of the inhibition properties of the most promising candidates allowed us to identify two new lead inhibitors that will deserve further optimization. From the computational point of view, this work demonstrates the predictive power of AutoDock4 and suggests its application for the screening of large chemical libraries of potential covalent binders against the SARS-CoV-2 M enzyme.

摘要

在 2020 年的大部分时间里,2019 年冠状病毒病(COVID-19)大流行一直是全球健康和经济的主要风险,促使人们前所未有地努力寻找预防和治疗该病的药物。在年底,这些努力取得了成果,美国食品和药物管理局(FDA)和欧洲药品管理局(EMA)批准了疫苗,为未来带来了新的希望。另一方面,临床数据强调了迫切需要有效的药物来治疗 COVID-19 患者。在这项工作中,我们针对严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)木瓜蛋白酶样半胱氨酸蛋白酶开展了虚拟筛选活动,使用我们内部的肽和非肽配体数据库,这些配体具有不同类型的弹头,作为迈克尔受体。为此,我们使用了经过定制的 AutoDock4 对接软件来预测与靶蛋白形成共价加合物。对最有前途的候选物的抑制特性的验证使我们能够鉴定出两种新的先导抑制剂,它们值得进一步优化。从计算角度来看,这项工作证明了 AutoDock4 的预测能力,并表明其可用于筛选针对 SARS-CoV-2 M 酶的潜在共价结合物的大型化学库。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验