Campisi Dario, Lamberts Thanja, Dzade Nelson Y, Martinazzo Rocco, Ten Kate Inge Loes, Tielens Alexander G G M
Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
J Phys Chem A. 2021 Apr 8;125(13):2770-2781. doi: 10.1021/acs.jpca.1c02326. Epub 2021 Mar 30.
Density functional theory (DFT) has provided deep atomic-level insights into the adsorption behavior of aromatic molecules on solid surfaces. However, modeling the surface phenomena of large molecules on mineral surfaces with accurate plane wave methods (PW) can be orders of magnitude more computationally expensive than localized atomic orbitals (LCAO) methods. In the present work, we propose a less costly approach based on the DFT-D4 method (PBE-D4), using LCAO, to study the interactions of aromatic molecules with the {010} forsterite (MgSiO) surface for their relevance in astrochemistry. We studied the interaction of benzene with the pristine {010} forsterite surface and with transition-metal cations (Fe and Ni) using PBE-D4 and a vdW-inclusive density functional (Dion, Rydberg, Schröder, Langreth, and Lundqvist (DRSLL)) with LCAO methods. PBE-D4 shows good agreement with coupled-cluster methods (CCSD(T)) for the binding energy trend of cation complexes and with PW methods for the binding energy of benzene on the forsterite surface with a difference of about 0.03 eV. The basis set superposition error (BSSE) correction is shown to be essential to ensure a correct estimation of the binding energies even when large basis sets are employed for single-point calculations of the optimized structures with smaller basis sets. We also studied the interaction of naphthalene and benzocoronene on pristine and transition-metal-doped {010} forsterite surfaces as a test case for PBE-D4. Yielding results that are in good agreement with the plane wave methods with a difference of about 0.02-0.17 eV, the PBE-D4 method is demonstrated to be effective in unraveling the binding structures and the energetic trends of aromatic molecules on pristine and transition-metal-doped forsterite mineral surfaces. Furthermore, PBE-D4 results are in good agreement with its predecessor PBE-D3(BJM) and with the vdW-inclusive density functionals, as long as transition metals are not involved. Hence, PBE-D4/CP-DZP has been proven to be a robust theory level to study the interaction of aromatic molecules on mineral surfaces.
密度泛函理论(DFT)为深入了解芳香族分子在固体表面的吸附行为提供了原子层面的见解。然而,使用精确的平面波方法(PW)对大分子在矿物表面的现象进行建模,其计算成本可能比局域原子轨道(LCAO)方法高出几个数量级。在本工作中,我们提出一种基于DFT-D4方法(PBE-D4)、使用LCAO的成本较低的方法,以研究芳香族分子与{010}镁橄榄石(MgSiO)表面的相互作用,因为它们在天体化学中具有相关性。我们使用PBE-D4和包含范德华力的密度泛函(迪翁、里德伯格、施罗德、朗格雷思和伦德奎斯特(DRSLL))以及LCAO方法,研究了苯与原始{010}镁橄榄石表面以及与过渡金属阳离子(铁和镍)的相互作用。PBE-D4对于阳离子配合物的结合能趋势与耦合簇方法(CCSD(T))显示出良好的一致性,对于苯在镁橄榄石表面的结合能与PW方法显示出良好的一致性,差异约为0.03 eV。即使在使用大基组对优化结构进行单点计算(基组较小)时,基组叠加误差(BSSE)校正对于确保结合能的正确估计也至关重要。我们还研究了萘和苯并蒄在原始和过渡金属掺杂的{010}镁橄榄石表面的相互作用,以此作为PBE-D4的一个测试案例。PBE-D4方法得到的结果与平面波方法显示出良好的一致性,差异约为0.02 - 0.