DAUIN, Politecnico di Torino, 10129, Turin, Italy.
Fondazione Bruno Kessler, 38123, Trento, Italy.
Sci Rep. 2024 Feb 3;14(1):2847. doi: 10.1038/s41598-024-52677-1.
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic, rare disease, characterized by the formation of multiple cysts that grow out of the renal tubules. Despite intensive attempts to develop new drugs or repurpose existing ones, there is currently no definitive cure for ADPKD. This is primarily due to the complex and variable pathogenesis of the disease and the lack of models that can faithfully reproduce the human phenotype. Therefore, the development of models that allow automated detection of cysts' growth directly on human kidney tissue is a crucial step in the search for efficient therapeutic solutions. Artificial Intelligence methods, and deep learning algorithms in particular, can provide powerful and effective solutions to such tasks, and indeed various architectures have been proposed in the literature in recent years. Here, we comparatively review state-of-the-art deep learning segmentation models, using as a testbed a set of sequential RGB immunofluorescence images from 4 in vitro experiments with 32 engineered polycystic kidney tubules. To gain a deeper understanding of the detection process, we implemented both pixel-wise and cyst-wise performance metrics to evaluate the algorithms. Overall, two models stand out as the best performing, namely UNet++ and UACANet: the latter uses a self-attention mechanism introducing some explainability aspects that can be further exploited in future developments, thus making it the most promising algorithm to build upon towards a more refined cyst-detection platform. UACANet model achieves a cyst-wise Intersection over Union of 0.83, 0.91 for Recall, and 0.92 for Precision when applied to detect large-size cysts. On all-size cysts, UACANet averages at 0.624 pixel-wise Intersection over Union. The code to reproduce all results is freely available in a public GitHub repository.
常染色体显性多囊肾病 (ADPKD) 是一种单基因、罕见的疾病,其特征是形成多个从肾小管中生长出来的囊肿。尽管人们努力开发新的药物或重新利用现有的药物,但目前还没有针对 ADPKD 的明确治疗方法。这主要是由于该疾病的发病机制复杂且多变,以及缺乏能够真实再现人类表型的模型。因此,开发能够直接在人类肾脏组织上自动检测囊肿生长的模型是寻找有效治疗方法的关键步骤。人工智能方法,特别是深度学习算法,可以为这些任务提供强大而有效的解决方案,实际上近年来文献中已经提出了各种架构。在这里,我们使用 4 个体外实验的一系列顺序 RGB 免疫荧光图像对最新的深度学习分割模型进行了比较性综述,这些实验共涉及 32 个人工多囊肾小管。为了更深入地了解检测过程,我们实现了像素级和囊肿级的性能指标来评估算法。总的来说,有两个模型表现突出,分别是 UNet++ 和 UACANet:后者使用了自注意力机制,引入了一些可解释性方面,可以在未来的开发中进一步利用,因此是构建更精细的囊肿检测平台的最有前途的算法。UACANet 模型在应用于检测大尺寸囊肿时,囊肿级别的交并比 (Intersection over Union, IoU) 为 0.83,召回率 (Recall) 为 0.91,精确度 (Precision) 为 0.92。在所有尺寸的囊肿上,UACANet 的平均像素级别的交并比 (IoU) 为 0.624。重现所有结果的代码可在公共 GitHub 存储库中免费获得。