Department of Medicine, School of Medicine and Public Health, University of Wisconsin in Madison, Madison, Wisconsin, USA.
University of Wisconsin Carbone Comprehensive Cancer, Madison, Wisconsin, USA.
Stem Cells. 2021 Sep;39(9):1145-1154. doi: 10.1002/stem.3380. Epub 2021 Apr 6.
Pharmacological depletion of macrophages in vivo with liposomal clodronate renders mice unresponsive to adoptive transfer of mesenchymal stromal cells (MSCs) for affecting outcomes of acute inflammatory pathology. This experimental observation identifies host macrophages as necessary in mediating the salutary anti-inflammatory properties of MSCs as a cellular pharmaceutical. This theory is supported by the observation that transfusion of MSCs leads to the prompt phagocytosis of nearly half of lung entrapped MSCs by lung resident macrophages, triggering an interleukin (IL)-10 suppressive efferocytotic response. In addition, non-phagocytosed MSCs with COX2 competency shape the immune milieu by inducing tissue macrophages to express IL-10. Additional experimental evidence identifies MSC-borne IL-6, IDO and TSG-6 as directly involved in macrophage polarization. Along similar lines of functional convergence, implantation of CCL2 MSCs in the extravascular space where interaction with lung resident perivascular macrophages is not operative, also leads to IL-10 polarization of CCR2 macrophages within acute injured tissue far removed from MSC depot. Intriguingly, MSC-derived CCL2 on its own is not sufficient to polarize macrophages and requires heterodimerization with MSC-borne CXCL12 to trigger macrophage IL-10 polarization via CCR2, but not CXCR4. Such chemokine cooperativity opens a new venue for analysis of MSC potency especially considering the rich chemokine secretome of MSC exposed to inflammatory stimulus. As an aggregate, these data highlight a necessary MSC and host macrophage functional dyad that may inform potency attribute analysis of MSCs-including the chemokine interactome-that may be directly linked to in vivo clinical anti-inflammatory and regenerative response.
体内用脂质体氯膦酸盐耗竭巨噬细胞会使小鼠对间充质基质细胞 (MSC) 的过继转移无反应,从而影响急性炎症病理的结果。这一实验观察结果表明,宿主巨噬细胞在介导 MSC 的有益抗炎特性方面是必要的,因为 MSC 是一种细胞药物。这一理论得到了以下观察结果的支持:输注 MSC 会导致近一半被肺捕获的 MSC 被肺驻留巨噬细胞迅速吞噬,触发白细胞介素 (IL)-10 抑制吞噬反应。此外,具有 COX2 能力的未被吞噬的 MSC 通过诱导组织巨噬细胞表达 IL-10 来塑造免疫环境。额外的实验证据表明,MSC 携带的 IL-6、IDO 和 TSG-6 直接参与巨噬细胞极化。沿着类似的功能趋同的思路,在血管外空间植入 CCL2 MSC,其中与肺驻留血管周巨噬细胞的相互作用不起作用,也会导致急性损伤组织中远离 MSC 储存库的 CCR2 巨噬细胞的 IL-10 极化。有趣的是,MSC 衍生的 CCL2 本身不足以极化巨噬细胞,并且需要与 MSC 携带的 CXCL12 异二聚化,通过 CCR2 而不是 CXCR4 触发巨噬细胞的 IL-10 极化。这种趋化因子协同作用为分析 MSC 效力开辟了一个新的途径,特别是考虑到暴露于炎症刺激的 MSC 丰富的趋化因子分泌组。总的来说,这些数据突出了 MSC 和宿主巨噬细胞功能对偶体的必要性,这可能为 MSC 效力分析提供信息,包括趋化因子互作网络,这可能与体内临床抗炎和再生反应直接相关。