Suppr超能文献

人类终末期心力衰竭的共识转录组景观。

Consensus Transcriptional Landscape of Human End-Stage Heart Failure.

机构信息

Faculty of Medicine, and Heidelberg University Hospital Institute for Computational Biomedicine Bioquant Heidelberg University Heidelberg Germany.

Faculty of Biosciences Heidelberg University Heidelberg Germany.

出版信息

J Am Heart Assoc. 2021 Apr 6;10(7):e019667. doi: 10.1161/JAHA.120.019667. Epub 2021 Mar 31.

Abstract

Background Transcriptomic studies have contributed to fundamental knowledge of myocardial remodeling in human heart failure (HF). However, the key HF genes reported are often inconsistent between studies, and systematic efforts to integrate evidence from multiple patient cohorts are lacking. Here, we aimed to provide a framework for comprehensive comparison and analysis of publicly available data sets resulting in an unbiased consensus transcriptional signature of human end-stage HF. Methods and Results We curated and uniformly processed 16 public transcriptomic studies of left ventricular samples from 263 healthy and 653 failing human hearts. First, we evaluated the degree of consistency between studies by using linear classifiers and overrepresentation analysis. Then, we meta-analyzed the deregulation of 14 041 genes to extract a consensus signature of HF. Finally, to functionally characterize this signature, we estimated the activities of 343 transcription factors, 14 signaling pathways, and 182 micro RNAs, as well as the enrichment of 5998 biological processes. Machine learning approaches revealed conserved disease patterns across all studies independent of technical differences. These consistent molecular changes were prioritized with a meta-analysis, functionally characterized and validated on external data. We provide all results in a free public resource (https://saezlab.shinyapps.io/reheat/) and exemplified usage by deciphering fetal gene reprogramming and tracing the potential myocardial origin of the plasma proteome markers in patients with HF. Conclusions Even though technical and sampling variability confound the identification of differentially expressed genes in individual studies, we demonstrated that coordinated molecular responses during end-stage HF are conserved. The presented resource is crucial to complement findings in independent studies and decipher fundamental changes in failing myocardium.

摘要

背景

转录组学研究有助于深入了解人类心力衰竭(HF)中心肌重构的基本机制。然而,报告的关键 HF 基因在不同研究之间往往不一致,并且缺乏系统地整合来自多个患者队列的证据的努力。在这里,我们旨在提供一个综合比较和分析公开可用数据集的框架,从而得出人类终末期 HF 的无偏共识转录特征。

方法和结果

我们整理并统一处理了来自 263 个健康人和 653 个衰竭心脏的左心室样本的 16 个公共转录组研究。首先,我们使用线性分类器和过表达分析来评估研究之间的一致性程度。然后,我们对 14041 个基因的失调进行了荟萃分析,以提取 HF 的共识特征。最后,为了对该特征进行功能表征,我们估计了 343 个转录因子、14 个信号通路和 182 个 microRNA 的活性,以及 5998 个生物学过程的富集。机器学习方法揭示了所有研究中一致的疾病模式,独立于技术差异。这些一致的分子变化通过荟萃分析进行优先排序,在外部数据上进行功能表征和验证。我们在一个免费的公共资源(https://saezlab.shinyapps.io/reheat/)中提供了所有结果,并通过破译胎儿基因重编程和追踪 HF 患者血浆蛋白质组标记物的潜在心肌来源为例说明了其用法。

结论

尽管技术和采样变异性会干扰个体研究中差异表达基因的识别,但我们证明了在终末期 HF 期间协调的分子反应是保守的。所提供的资源对于补充独立研究中的发现和破译衰竭心肌中的基本变化至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b00/8174362/9a160d7a8f00/JAH3-10-e019667-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验