Suppr超能文献

基于多种算法对心力衰竭患者RNA测序数据集特征基因的分析与验证

Analysis and validation of characteristic genes in RNA sequencing datasets from heart failure patients based on multiple algorithms.

作者信息

Li Yuxuan, Bai Ying, Wang Wujiao, Ma Zhaotian, Li Peng, Li Dong, Li Sinai, Jin Jialin, Lin Qian

机构信息

Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.

Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing, China.

出版信息

Front Cardiovasc Med. 2025 Aug 26;12:1559429. doi: 10.3389/fcvm.2025.1559429. eCollection 2025.

Abstract

BACKGROUND

Patients with heart failure (HF) have a poor prognosis and continue to pose a global threat to human health. Consequently, it is crucial to employ bioinformatic approaches to analyze functional alterations within the transcriptome. This analysis should be conducted in conjunction with transcriptome sequencing data from a large sample of clinical myocardial tissue, in order to identify the core pathogenic mechanisms in heart failure myocardial tissue.

METHOD

Transcriptome data from HF patient myocardial biopsies underwent Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs). These DEGs were intersected with key genes identified via Weighted Gene Co-expression Network Analysis (WGCNA) in HF. Functional enrichment analysis was performed on the DEGs. Selected key genes were experimentally validated using RT-qPCR in hypertrophic cardiomyocyte models. Single-cell data dimensionality reduction, clustering, and visualization were achieved using Principal component analysis (PCA) and uniform manifold approximation and projection (UMAP). Cell types were annotated with SingleR and CellMarker, and single-cell functional enrichment was performed using the "irGSEA" R package.

RESULTS

RRA of transcriptome data from five studies identified 102 DEGs. Functional enrichment analyses (GO, KEGG, GSEA) revealed associated functional alterations. WGCNA highlighted a key module enriched for energy metabolism-related genes, with the mitochondrial matrix and inner membrane identified as their primary subcellular locations. Integrating RRA-derived DEGs with WGCNA key module genes yielded 14 crucial genes, validated experimentally in a hypertrophic cardiomyocyte model. Analysis of single-cell RNA-seq data identified cold shock domain containing C2 (CSDC2) and Single-pass membrane and coiled-coil domain-containing protein 4 (SMCO4) as cardiomyocyte-specific genes within this set. Subpopulations of cardiomyocytes with high or low expression of SMCO4 and CSDC2 showed strong associations with alterations in fatty acid metabolism, adipogenesis, and oxidative phosphorylation pathways.

CONCLUSION

Integrated transcriptomic analysis identified 12 key genes linked to HF, which were validated in a hypertrophy model. Single-cell data showed SMCO4 and CSDC2 are specifically expressed in cardiomyocytes and regulate fatty acid metabolism. This suggests SMCO4 and CSDC2 contribute to HF by altering fatty acid metabolism in heart cells, revealing new disease mechanisms.

摘要

背景

心力衰竭(HF)患者预后较差,持续对人类健康构成全球威胁。因此,采用生物信息学方法分析转录组内的功能改变至关重要。该分析应结合来自大量临床心肌组织样本的转录组测序数据进行,以确定心力衰竭心肌组织中的核心致病机制。

方法

对HF患者心肌活检的转录组数据进行稳健秩聚合(RRA)以鉴定差异表达基因(DEG)。这些DEG与通过加权基因共表达网络分析(WGCNA)在HF中鉴定的关键基因进行交集分析。对DEG进行功能富集分析。在肥厚型心肌细胞模型中使用RT-qPCR对选定的关键基因进行实验验证。使用主成分分析(PCA)和均匀流形近似与投影(UMAP)实现单细胞数据降维、聚类和可视化。使用SingleR和CellMarker对细胞类型进行注释,并使用“irGSEA”R包进行单细胞功能富集分析。

结果

五项研究的转录组数据的RRA鉴定出102个DEG。功能富集分析(GO、KEGG、GSEA)揭示了相关的功能改变。WGCNA突出显示了一个富含能量代谢相关基因的关键模块,线粒体基质和内膜被确定为其主要亚细胞位置。将RRA衍生的DEG与WGCNA关键模块基因整合产生了14个关键基因,并在肥厚型心肌细胞模型中进行了实验验证。单细胞RNA测序数据分析确定含冷休克结构域C2(CSDC2)和含单次跨膜和卷曲螺旋结构域蛋白4(SMCO4)为该组中心肌细胞特异性基因。SMCO4和CSDC2高表达或低表达的心肌细胞亚群与脂肪酸代谢、脂肪生成和氧化磷酸化途径的改变密切相关。

结论

综合转录组分析确定了12个与HF相关的关键基因,并在肥大模型中得到验证。单细胞数据显示SMCO4和CSDC2在心肌细胞中特异性表达并调节脂肪酸代谢。这表明SMCO4和CSDC2通过改变心脏细胞中的脂肪酸代谢导致HF,揭示了新的疾病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a05/12417514/8990d4881a63/fcvm-12-1559429-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验