Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104.
Pennsylvania Muscle Institute & Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.
Mol Biol Cell. 2022 May 15;33(6):ar52. doi: 10.1091/mbc.E21-10-0480. Epub 2021 Oct 27.
Microtubules establish the directionality of intracellular transport by kinesins and dynein through polarized assembly, but it remains unclear how directed transport occurs along microtubules organized with mixed polarity. We investigated the ability of the plus end-directed kinesin-4 motor KIF21B to navigate mixed polarity microtubules in mammalian dendrites. Reconstitution assays with recombinant KIF21B and engineered microtubule bundles or extracted neuronal cytoskeletons indicate that nucleotide-independent microtubule-binding regions of KIF21B modulate microtubule dynamics and promote directional switching on antiparallel microtubules. Optogenetic recruitment of KIF21B to organelles in live neurons induces unidirectional transport in axons but bidirectional transport with a net retrograde bias in dendrites. Removal of the secondary microtubule-binding regions of KIF21B or dampening of microtubule dynamics with low concentrations of nocodazole eliminates retrograde bias in live dendrites. Further exploration of the contribution of microtubule dynamics in dendrites to directionality revealed plus end-out microtubules to be more dynamic than plus end-in microtubules, with nocodazole preferentially stabilizing the plus end-out population. We propose a model in which both nucleotide-sensitive and -insensitive microtubule-binding sites of KIF21B motors contribute to the search and selection of stable plus end-in microtubules within the mixed polarity microtubule arrays characteristic of mammalian dendrites to achieve net retrograde movement of KIF21B-bound cargoes.
微管通过动力蛋白沿微管的极化组装建立细胞内运输的方向性,但是对于沿具有混合极性的微管组织的定向运输如何发生仍不清楚。我们研究了正向导向的驱动蛋白-4 马达 KIF21B 在哺乳动物树突中导航混合极性微管的能力。使用重组 KIF21B 和工程化微管束或提取的神经元细胞骨架的重组实验表明,KIF21B 的核苷酸非依赖性微管结合区域调节微管动力学并促进在反平行微管上的定向转换。活神经元中光遗传学募集 KIF21B 到细胞器中,在轴突中诱导单向运输,但在树突中具有净逆行偏向的双向运输。去除 KIF21B 的二级微管结合区域或用低浓度的诺考达唑抑制微管动力学会消除活树突中的逆行偏向。进一步探索树突中微管动力学对方向性的贡献表明,正向端出微管比正向端入微管更具动态性,诺考达唑优先稳定正向端出群体。我们提出了一个模型,其中 KIF21B 马达的核苷酸敏感和非敏感微管结合位点都有助于在哺乳动物树突特征性的混合极性微管阵列中搜索和选择稳定的正向端入微管,以实现 KIF21B 结合货物的净逆行运动。