Horne Christopher R, Venugopal Hariprasad, Panjikar Santosh, Wood David M, Henrickson Amy, Brookes Emre, North Rachel A, Murphy James M, Friemann Rosmarie, Griffin Michael D W, Ramm Georg, Demeler Borries, Dobson Renwick C J
Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
Clive and Vera Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia.
Nat Commun. 2021 Mar 31;12(1):1988. doi: 10.1038/s41467-021-22253-6.
Bacteria respond to environmental changes by inducing transcription of some genes and repressing others. Sialic acids, which coat human cell surfaces, are a nutrient source for pathogenic and commensal bacteria. The Escherichia coli GntR-type transcriptional repressor, NanR, regulates sialic acid metabolism, but the mechanism is unclear. Here, we demonstrate that three NanR dimers bind a (GGTATA)-repeat operator cooperatively and with high affinity. Single-particle cryo-electron microscopy structures reveal the DNA-binding domain is reorganized to engage DNA, while three dimers assemble in close proximity across the (GGTATA)-repeat operator. Such an interaction allows cooperative protein-protein interactions between NanR dimers via their N-terminal extensions. The effector, N-acetylneuraminate, binds NanR and attenuates the NanR-DNA interaction. The crystal structure of NanR in complex with N-acetylneuraminate reveals a domain rearrangement upon N-acetylneuraminate binding to lock NanR in a conformation that weakens DNA binding. Our data provide a molecular basis for the regulation of bacterial sialic acid metabolism.
细菌通过诱导一些基因的转录和抑制其他基因来响应环境变化。覆盖人类细胞表面的唾液酸是致病细菌和共生细菌的营养来源。大肠杆菌GntR型转录抑制因子NanR调节唾液酸代谢,但其机制尚不清楚。在这里,我们证明三个NanR二聚体以高亲和力协同结合一个(GGTATA)重复操纵子。单颗粒冷冻电子显微镜结构显示,DNA结合结构域发生重组以与DNA结合,而三个二聚体在(GGTATA)重复操纵子上紧密组装。这种相互作用允许NanR二聚体通过其N端延伸进行协同的蛋白质-蛋白质相互作用。效应物N-乙酰神经氨酸与NanR结合并减弱NanR与DNA的相互作用。NanR与N-乙酰神经氨酸复合物的晶体结构显示,N-乙酰神经氨酸结合后结构域发生重排,将NanR锁定在一种削弱DNA结合的构象中。我们的数据为细菌唾液酸代谢的调控提供了分子基础。