Lai Benjamin Fook Lun, Lu Rick Xing Ze, Davenport Huyer Locke, Kakinoki Sachiro, Yazbeck Joshua, Wang Erika Yan, Wu Qinghua, Zhang Boyang, Radisic Milica
Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
Nat Protoc. 2021 Apr;16(4):2158-2189. doi: 10.1038/s41596-020-00490-1. Epub 2021 Mar 31.
Owing to their high spatiotemporal precision and adaptability to different host cells, organ-on-a-chip systems are showing great promise in drug discovery, developmental biology studies and disease modeling. However, many current micro-engineered biomimetic systems are limited in technological application because of culture media mixing that does not allow direct incorporation of techniques from stem cell biology, such as organoids. Here, we describe a detailed alternative method to cultivate millimeter-scale functional vascularized tissues on a biofabricated platform, termed 'integrated vasculature for assessing dynamic events', that enables facile incorporation of organoid technology. Utilizing the 3D stamping technique with a synthetic polymeric elastomer, a scaffold termed 'AngioTube' is generated with a central microchannel that has the mechanical stability to support a perfusable vascular system and the self-assembly of various parenchymal tissues. We demonstrate an increase in user familiarity and content analysis by situating the scaffold on a footprint of a 96-well plate. Uniquely, the platform can be used for facile connection of two or more tissue compartments in series through a common vasculature. Built-in micropores enable the studies of cell invasion involved in both angiogenesis and metastasis. We describe how this protocol can be applied to create both vascularized cardiac and hepatic tissues, metastatic breast cancer tissue and personalized pancreatic cancer tissue through incorporation of patient-derived organoids. Platform assembly to populating the scaffold with cells of interest into perfusable functional vascularized tissue will require 12-14 d and an additional 4 d if pre-polymer and master molds are needed.
由于其高时空精度以及对不同宿主细胞的适应性,芯片器官系统在药物发现、发育生物学研究和疾病建模方面展现出了巨大的潜力。然而,由于培养基混合问题,目前许多微工程仿生系统在技术应用上受到限制,这使得干细胞生物学技术(如类器官技术)无法直接应用。在此,我们描述了一种详细的替代方法,用于在生物制造平台上培养毫米级功能性血管化组织,该平台称为“用于评估动态事件的集成血管系统”,它能够轻松整合类器官技术。利用带有合成聚合物弹性体的3D冲压技术,生成了一种名为“血管管”的支架,其中心微通道具有机械稳定性,可支持可灌注的血管系统以及各种实质组织的自组装。通过将支架放置在96孔板的占地面积上,我们证明了用户熟悉度和内容分析的增加。独特的是,该平台可用于通过共同的脉管系统轻松串联连接两个或更多组织隔室。内置的微孔能够研究血管生成和转移过程中涉及的细胞侵袭。我们描述了如何通过整合患者来源的类器官,将该方案应用于创建血管化的心脏和肝脏组织、转移性乳腺癌组织以及个性化胰腺癌组织。从平台组装到用感兴趣的细胞填充支架以形成可灌注的功能性血管化组织,需要12 - 14天,如果需要预聚物和母模,则还需要额外4天。