Suppr超能文献

硫糖酵解中硫糖选择性的分子基础。

Molecular Basis of Sulfosugar Selectivity in Sulfoglycolysis.

作者信息

Sharma Mahima, Abayakoon Palika, Epa Ruwan, Jin Yi, Lingford James P, Shimada Tomohiro, Nakano Masahiro, Mui Janice W-Y, Ishihama Akira, Goddard-Borger Ethan D, Davies Gideon J, Williams Spencer J

机构信息

York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.

School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria 3010, Australia.

出版信息

ACS Cent Sci. 2021 Mar 24;7(3):476-487. doi: 10.1021/acscentsci.0c01285. Epub 2021 Feb 23.

Abstract

The sulfosugar sulfoquinovose (SQ) is produced by essentially all photosynthetic organisms on Earth and is metabolized by bacteria through the process of sulfoglycolysis. The sulfoglycolytic Embden-Meyerhof-Parnas pathway metabolizes SQ to produce dihydroxyacetone phosphate and sulfolactaldehyde and is analogous to the classical Embden-Meyerhof-Parnas glycolysis pathway for the metabolism of glucose-6-phosphate, though the former only provides one C3 fragment to central metabolism, with excretion of the other C3 fragment as dihydroxypropanesulfonate. Here, we report a comprehensive structural and biochemical analysis of the three core steps of sulfoglycolysis catalyzed by SQ isomerase, sulfofructose (SF) kinase, and sulfofructose-1-phosphate (SFP) aldolase. Our data show that despite the superficial similarity of this pathway to glycolysis, the sulfoglycolytic enzymes are specific for SQ metabolites and are not catalytically active on related metabolites from glycolytic pathways. This observation is rationalized by three-dimensional structures of each enzyme, which reveal the presence of conserved sulfonate binding pockets. We show that SQ isomerase acts preferentially on the β-anomer of SQ and reversibly produces both SF and sulforhamnose (SR), a previously unknown sugar that acts as a derepressor for the transcriptional repressor CsqR that regulates SQ-utilization. We also demonstrate that SF kinase is a key regulatory enzyme for the pathway that experiences complex modulation by the metabolites SQ, SLA, AMP, ADP, ATP, F6P, FBP, PEP, DHAP, and citrate, and we show that SFP aldolase reversibly synthesizes SFP. This body of work provides fresh insights into the mechanism, specificity, and regulation of sulfoglycolysis and has important implications for understanding how this biochemistry interfaces with central metabolism in prokaryotes to process this major repository of biogeochemical sulfur.

摘要

磺糖昆布糖(SQ)由地球上几乎所有光合生物产生,并通过磺糖酵解过程被细菌代谢。磺糖酵解的Embden-Meyerhof-Parnas途径将SQ代谢产生磷酸二羟丙酮和磺基乙醛,这类似于经典的Embden-Meyerhof-Parnas糖酵解途径对6-磷酸葡萄糖的代谢,尽管前者仅为中心代谢提供一个C3片段,另一个C3片段以二羟基丙烷磺酸盐的形式排出。在此,我们报告了对由SQ异构酶、磺果糖(SF)激酶和磺果糖-1-磷酸(SFP)醛缩酶催化的磺糖酵解三个核心步骤的全面结构和生化分析。我们的数据表明,尽管该途径与糖酵解表面相似,但磺糖酵解酶对SQ代谢物具有特异性,对糖酵解途径的相关代谢物无催化活性。每个酶的三维结构解释了这一观察结果,其揭示了保守的磺酸盐结合口袋的存在。我们表明,SQ异构酶优先作用于SQ的β-异头物,并可逆地产生SF和磺鼠李糖(SR),磺鼠李糖是一种以前未知的糖,作为调节SQ利用的转录阻遏物CsqR的去阻遏物。我们还证明,SF激酶是该途径的关键调节酶,受到代谢物SQ、SLA、AMP、ADP、ATP、F6P、FBP、PEP、DHAP和柠檬酸盐的复杂调节,并且我们表明SFP醛缩酶可逆地合成SFP。这项工作为磺糖酵解的机制、特异性和调节提供了新的见解,对于理解这种生物化学如何与原核生物的中心代谢相互作用以处理这种主要的生物地球化学硫库具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c12c/8006165/2f87edb20f34/oc0c01285_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验