Suppr超能文献

基于动态对比增强 MRI 的乳腺癌肿瘤浸润淋巴细胞水平评估的放射组学模型。

Radiomics Model for Evaluating the Level of Tumor-Infiltrating Lymphocytes in Breast Cancer Based on Dynamic Contrast-Enhanced MRI.

机构信息

Department of Radiology, The First Affiliate Hospital of Wenzhou Medical University, Wenzhou, China.

Information Technology Center, The First Affiliate Hospital of Wenzhou Medical University, Wenzhou, China.

出版信息

Clin Breast Cancer. 2021 Oct;21(5):440-449.e1. doi: 10.1016/j.clbc.2020.12.008. Epub 2020 Dec 28.

Abstract

BACKGROUND

To help identify potential breast cancer (BC) candidates for immunotherapies, we aimed to develop and validate a radiology-based biomarker (radiomic score) to predict the level of tumor-infiltrating lymphocytes (TILs) in patients with BC.

PATIENTS AND METHODS

This retrospective study enrolled 172 patients with histopathology-confirmed BC assigned to the training (n = 121) or testing (n = 51) cohorts. Radiomic features were extracted and selected using Analysis-Kit software. The correlation between TIL levels and clinical features and radiomic features was evaluated. The clinical features model, radiomic signature model, and combined prediction model were constructed and compared. Predictive performance was assessed by receiver operating characteristic analysis and clinical utility by implementing a nomogram.

RESULTS

Seven radiomic features were selected as the best discriminators to construct the radiomic signature model, the performance of which was good in both the training and validation data sets, with an area under the curve (AUC) of 0.742 (95% confidence interval [CI], 0.642-0.843) and 0.718 (95% CI, 0.558-0.878), respectively. Estrogen receptor status and tumor diameter were confirmed to be significant features for building the clinical feature model, which had an AUC of 0.739 (95% CI, 0.632-0.846) and 0.824 (95% CI, 0.692-0.957), respectively. The combined prediction model had an AUC of 0.800 (95% CI, 0.709-0.892) and 0.842 (95% CI, 0.730-0.954), respectively.

CONCLUSION

The radiomic signature could be an important predictor of the TIL level in BC, which, when validated, could be useful in identifying BC patients who can benefit from immunotherapies. The nomogram may help clinicians make decisions.

摘要

背景

为了帮助确定潜在的乳腺癌(BC)免疫治疗候选者,我们旨在开发和验证一种基于影像学的生物标志物(放射组学评分),以预测 BC 患者肿瘤浸润淋巴细胞(TIL)的水平。

患者和方法

这项回顾性研究纳入了 172 名经组织病理学证实的 BC 患者,分为训练队列(n=121)和测试队列(n=51)。使用 Analysis-Kit 软件提取和选择放射组学特征。评估 TIL 水平与临床特征和放射组学特征之间的相关性。构建了临床特征模型、放射组学特征模型和联合预测模型,并进行了比较。通过接收者操作特征分析评估预测性能,并通过实施列线图评估临床实用性。

结果

选择了 7 个放射组学特征作为最佳判别因素来构建放射组学特征模型,该模型在训练和验证数据集的性能都很好,曲线下面积(AUC)分别为 0.742(95%置信区间 [CI],0.642-0.843)和 0.718(95% CI,0.558-0.878)。雌激素受体状态和肿瘤直径被证实是构建临床特征模型的重要特征,其 AUC 分别为 0.739(95% CI,0.632-0.846)和 0.824(95% CI,0.692-0.957)。联合预测模型的 AUC 分别为 0.800(95% CI,0.709-0.892)和 0.842(95% CI,0.730-0.954)。

结论

放射组学特征可以作为 BC 中 TIL 水平的重要预测指标,在验证后,可能有助于识别可以从免疫治疗中获益的 BC 患者。该列线图可能有助于临床医生做出决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验