Suppr超能文献

胃的三维重建采用虚拟染色内镜图像。

Stomach 3D Reconstruction Using Virtual Chromoendoscopic Images.

机构信息

Department of Systems and Control EngineeringSchool of EngineeringTokyo Institute of TechnologyTokyo152-8550Japan.

Division of Gastroenterology and HepatologyDepartment of MedicineNihon University School of MedicineTokyo101-8309Japan.

出版信息

IEEE J Transl Eng Health Med. 2021 Feb 24;9:1700211. doi: 10.1109/JTEHM.2021.3062226. eCollection 2021.

Abstract

Gastric endoscopy is a golden standard in the clinical process that enables medical practitioners to diagnose various lesions inside a patient's stomach. If a lesion is found, a success in identifying the location of the found lesion relative to the global view of the stomach will lead to better decision making for the next clinical treatment. Our previous research showed that the lesion localization could be achieved by reconstructing the whole stomach shape from chromoendoscopic indigo carmine (IC) dye-sprayed images using a structure-from-motion (SfM) pipeline. However, spraying the IC dye to the whole stomach requires additional time, which is not desirable for both patients and practitioners. Our objective is to propose an alternative way to achieve whole stomach 3D reconstruction without the need of the IC dye. We generate virtual IC-sprayed (VIC) images based on image-to-image style translation trained on unpaired real no-IC and IC-sprayed images, where we have investigated the effect of input and output color channel selection for generating the VIC images. We validate our reconstruction results by comparing them with the results using real IC-sprayed images and confirm that the obtained stomach 3D structures are comparable to each other. We also propose a local reconstruction technique to obtain a more detailed surface and texture around an interesting region. The proposed method achieves the whole stomach reconstruction without the need of real IC dye using SfM. We have found that translating no-IC green-channel images to IC-sprayed red-channel images gives the best SfM reconstruction result. Clinical impact We offer a method of the frame localization and local 3D reconstruction of a found gastric lesion using standard endoscopy images, leading to better clinical decision.

摘要

胃内窥镜检查是临床过程中的黄金标准,使医疗从业者能够诊断患者胃部的各种病变。如果发现病变,成功识别发现病变相对于胃全局视图的位置将有助于做出更好的临床治疗决策。我们之前的研究表明,可以使用基于运动结构(SfM)管道从染色内镜靛胭脂(IC)喷雾图像重建整个胃的形状来实现病变定位。然而,将 IC 染料喷洒到整个胃需要额外的时间,这对患者和医生都不理想。我们的目标是提出一种替代方法,无需使用 IC 染料即可实现整个胃的 3D 重建。我们基于未配对的真实无 IC 和 IC 喷雾图像的图像到图像风格转换训练生成虚拟 IC 喷雾(VIC)图像,研究了输入和输出颜色通道选择对生成 VIC 图像的影响。我们通过将重建结果与使用真实 IC 喷雾图像的结果进行比较来验证我们的重建结果,并确认获得的胃 3D 结构彼此相似。我们还提出了一种局部重建技术,以获得感兴趣区域周围更详细的表面和纹理。该方法使用 SfM 实现了无需真实 IC 染料的整个胃重建。我们发现,将无 IC 绿色通道图像转换为 IC 喷雾的红色通道图像可以获得最佳的 SfM 重建结果。临床影响 我们提供了一种使用标准内窥镜图像定位和局部 3D 重建发现的胃病变的方法,有助于做出更好的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/057d/8009143/e5e4b2adc8d6/widya1ab-3062226.jpg

相似文献

1
Stomach 3D Reconstruction Using Virtual Chromoendoscopic Images.
IEEE J Transl Eng Health Med. 2021 Feb 24;9:1700211. doi: 10.1109/JTEHM.2021.3062226. eCollection 2021.
2
Stomach 3D Reconstruction Based on Virtual Chromoendoscopic Image Generation.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1848-1852. doi: 10.1109/EMBC44109.2020.9176016.
3
3D Reconstruction of Whole Stomach from Endoscope Video Using Structure-from-Motion.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3900-3904. doi: 10.1109/EMBC.2019.8857964.
4
Whole Stomach 3D Reconstruction and Frame Localization From Monocular Endoscope Video.
IEEE J Transl Eng Health Med. 2019 Oct 18;7:3300310. doi: 10.1109/JTEHM.2019.2946802. eCollection 2019.
5
Diagnostic performance of deep-learning-based virtual chromoendoscopy in gastric neoplasms.
Gastric Cancer. 2024 May;27(3):539-547. doi: 10.1007/s10120-024-01469-7. Epub 2024 Jan 19.
6
Artificial intelligence-aided diagnostic imaging: A state-of-the-art technique in precancerous screening.
J Gastroenterol Hepatol. 2024 Mar;39(3):544-551. doi: 10.1111/jgh.16429. Epub 2023 Dec 7.
9
Learning-Based Depth and Pose Estimation for Monocular Endoscope with Loss Generalization.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3547-3552. doi: 10.1109/EMBC46164.2021.9630156.

引用本文的文献

1
2
Towards navigation in endoscopic kidney surgery based on preoperative imaging.
Healthc Technol Lett. 2023 Dec 13;11(2-3):67-75. doi: 10.1049/htl2.12059. eCollection 2024 Apr-Jun.
3
Autonomous Magnetic Navigation in Endoscopic Image Mosaics.
Adv Sci (Weinh). 2024 May;11(19):e2400980. doi: 10.1002/advs.202400980. Epub 2024 Mar 14.
4
Diagnostic performance of deep-learning-based virtual chromoendoscopy in gastric neoplasms.
Gastric Cancer. 2024 May;27(3):539-547. doi: 10.1007/s10120-024-01469-7. Epub 2024 Jan 19.

本文引用的文献

1
Augmenting Colonoscopy using Extended and Directional CycleGAN for Lossy Image Translation.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2020 Jun;2020:4695-4704. doi: 10.1109/cvpr42600.2020.00475. Epub 2020 Aug 5.
2
Stomach 3D Reconstruction Based on Virtual Chromoendoscopic Image Generation.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1848-1852. doi: 10.1109/EMBC44109.2020.9176016.
3
Whole Stomach 3D Reconstruction and Frame Localization From Monocular Endoscope Video.
IEEE J Transl Eng Health Med. 2019 Oct 18;7:3300310. doi: 10.1109/JTEHM.2019.2946802. eCollection 2019.
4
3D Reconstruction of Whole Stomach from Endoscope Video Using Structure-from-Motion.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3900-3904. doi: 10.1109/EMBC.2019.8857964.
5
Dense Depth Estimation in Monocular Endoscopy With Self-Supervised Learning Methods.
IEEE Trans Med Imaging. 2020 May;39(5):1438-1447. doi: 10.1109/TMI.2019.2950936. Epub 2019 Nov 1.
6
Implicit domain adaptation with conditional generative adversarial networks for depth prediction in endoscopy.
Int J Comput Assist Radiol Surg. 2019 Jul;14(7):1167-1176. doi: 10.1007/s11548-019-01962-w. Epub 2019 Apr 15.
7
Live Tracking and Dense Reconstruction for Handheld Monocular Endoscopy.
IEEE Trans Med Imaging. 2019 Jan;38(1):79-89. doi: 10.1109/TMI.2018.2856109. Epub 2018 Jul 13.
8
Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training.
IEEE Trans Med Imaging. 2018 Dec;37(12):2572-2581. doi: 10.1109/TMI.2018.2842767. Epub 2018 Jun 1.
9
Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy.
Med Image Anal. 2018 Aug;48:230-243. doi: 10.1016/j.media.2018.06.005. Epub 2018 Jun 14.
10
SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
Comput Methods Programs Biomed. 2018 May;158:135-146. doi: 10.1016/j.cmpb.2018.02.006. Epub 2018 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验