Suppr超能文献

Prostac:一种在前列腺癌中具有潜在预测价值的新综合评分。

Prostac: A New Composite Score With Potential Predictive Value in Prostate Cancer.

作者信息

Asante-Asamani E O, Pal Gargi, Liu Leslie, Ogunwobi Olorunseun O

机构信息

Department of Mathematics, Clarkson University, Potsdam, NY, United States.

Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States.

出版信息

Front Oncol. 2021 Mar 16;11:644665. doi: 10.3389/fonc.2021.644665. eCollection 2021.

Abstract

Prostate cancer (PCa) is the most commonly diagnosed solid organ cancer in men worldwide. Current diagnosis of PCa includes use of initial prostate specific antigen assay which has a high false positive rate, low specificity, and low sensitivity. The side effects of unnecessary prostate biopsies that healthy men are subjected to, often result in unintended health complications. New PCa biomarkers are being discovered to address this unmet need. Here, we report on the creation of a composite score (Prostac) based on three recently discovered PCa biomarkers, Plasmacytoma Variant Translocation 1 (PVT1) exons 4A, 4B, and 9. Statistical analysis of copy numbers derived from a real-time quantitative polymerase chain (qPCR) reaction - based assay, showed these PCa biomarkers to be linearly separable and significantly over expressed in PCa epithelial cells. We train a supervised learning algorithm using support vector machines to generate a classification hyperplane from which a user-friendly composite score is developed. Cross validation of Prostac using data from prostate epithelial cells (RWPE1) and PCa cells (MDA PCa 2b) accurately classified 100% of PCa cells. Creation of the Prostac score lays the groundwork for clinical trial of its use in PCa diagnosis.

摘要

前列腺癌(PCa)是全球男性中最常被诊断出的实体器官癌症。目前前列腺癌的诊断方法包括使用初始前列腺特异性抗原检测,该检测具有高假阳性率、低特异性和低敏感性。健康男性接受不必要的前列腺活检所产生的副作用,常常会导致意外的健康并发症。新的前列腺癌生物标志物正在被发现,以满足这一未被满足的需求。在此,我们报告基于最近发现的三种前列腺癌生物标志物——浆细胞瘤变异易位1(PVT1)外显子4A、4B和9创建的一个综合评分(Prostac)。对基于实时定量聚合酶链反应(qPCR)检测得出的拷贝数进行统计分析,结果显示这些前列腺癌生物标志物在前列腺癌上皮细胞中呈线性可分离且显著过表达。我们使用支持向量机训练一种监督学习算法,以生成一个分类超平面,并据此开发出一个用户友好的综合评分。使用来自前列腺上皮细胞(RWPE1)和前列腺癌细胞(MDA PCa 2b)的数据对Prostac进行交叉验证,准确地将100%的前列腺癌细胞分类。Prostac评分的创建为其在前列腺癌诊断中的临床试验奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447b/8009179/bbd826ef140a/fonc-11-644665-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验