Suppr超能文献

TAILOR-MS,一个用于解析复杂三酰基甘油脂肪酸结构的 Python 包:在牛乳和婴儿配方中的应用。

TAILOR-MS, a Python Package that Deciphers Complex Triacylglycerol Fatty Acyl Structures: Applications for Bovine Milk and Infant Formulas.

机构信息

Haematology Research Group, The Heart Research Institute, University of Sydney, Newtown, NSW 2042, Australia.

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia.

出版信息

Anal Chem. 2021 Apr 13;93(14):5684-5690. doi: 10.1021/acs.analchem.0c04373. Epub 2021 Apr 2.

Abstract

Liquid chromatography tandem mass spectrometry (LC/MS) and other mass spectrometric technologies have been widely applied for triacylglycerol profiling. One challenge for targeted identification of fatty acyl moieties that constitute triacylglycerol species in biological samples is the numerous combinations of 3 fatty acyl groups that can form a triacylglycerol molecule. Manual determination of triacylglycerol structures based on peak intensities and retention time can be highly inefficient and error-prone. To resolve this, we have developed TAILOR-MS, a Python (programming language) package that aims at assisting: (1) the generation of targeted LC/MS methods for triacylglycerol detection and (2) automating triacylglycerol structural determination and prediction. To assess the performance of TAILOR-MS, we conducted LC/MS triacylglycerol profiling of bovine milk and two infant formulas. Our results confirmed dissimilarities between bovine milk and infant formula triacylglycerol composition. Furthermore, we identified 247 triacylglycerol species and predicted the possible existence of another 317 in the bovine milk sample, representing one of the most comprehensive reports on the triacylglycerol composition of bovine milk thus far. Likewise, we presented here a complete infant formula triacylglycerol profile and reported >200 triacylglycerol species. TAILOR-MS dramatically shortened the time required for triacylglycerol structural identification from hours to seconds and performed decent structural predictions in the absence of some triacylglycerol constituent peaks. Taken together, TAILOR-MS is a valuable tool that can greatly save time and improve accuracy for targeted LC/MS triacylglycerol profiling.

摘要

液相色谱串联质谱(LC/MS)和其他质谱技术已广泛应用于三酰甘油分析。在生物样本中靶向鉴定构成三酰甘油种类的脂肪酸部分是一个挑战,因为可以形成三酰甘油分子的 3 个脂肪酸基团有无数种组合。基于峰强度和保留时间手动确定三酰甘油结构可能效率极低且容易出错。为了解决这个问题,我们开发了 TAILOR-MS,这是一个 Python(编程语言)包,旨在协助:(1)生成用于三酰甘油检测的靶向 LC/MS 方法,以及(2)自动化三酰甘油结构确定和预测。为了评估 TAILOR-MS 的性能,我们对牛乳和两种婴儿配方奶粉进行了 LC/MS 三酰甘油分析。我们的结果证实了牛乳和婴儿配方奶粉三酰甘油组成的差异。此外,我们鉴定了 247 种三酰甘油种类,并预测了牛乳样品中可能存在另外 317 种三酰甘油种类,这是迄今为止关于牛乳三酰甘油组成的最全面报告之一。同样,我们在这里展示了完整的婴儿配方奶粉三酰甘油图谱,并报告了>200 种三酰甘油种类。TAILOR-MS 将三酰甘油结构鉴定所需的时间从数小时缩短到数秒,并且在缺少某些三酰甘油成分峰的情况下进行了不错的结构预测。总之,TAILOR-MS 是一个非常有价值的工具,可以大大节省靶向 LC/MS 三酰甘油分析的时间并提高准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0911/8047770/8d545ede9d50/ac0c04373_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验