Suppr超能文献

二维团簇变分法:拓扑图示及其焓参数相关性

The 2-D Cluster Variation Method: Topography Illustrations and Their Enthalpy Parameter Correlations.

作者信息

Maren Alianna J

机构信息

Data Science Faculty, Northwestern University School of Professional Studies, Evanston, IL 60208, USA.

Themasis Associates, P.O. Box 274, Kealakekua, HI 96750, USA.

出版信息

Entropy (Basel). 2021 Mar 8;23(3):319. doi: 10.3390/e23030319.

Abstract

One of the biggest challenges in characterizing 2-D image topographies is finding a low-dimensional parameter set that can succinctly describe, not so much image patterns themselves, but the nature of these patterns. The 2-D cluster variation method (CVM), introduced by Kikuchi in 1951, can characterize very local image pattern distributions using configuration variables, identifying nearest-neighbor, next-nearest-neighbor, and triplet configurations. Using the 2-D CVM, we can characterize 2-D topographies using just two parameters; the activation enthalpy (ε0) and the interaction enthalpy (ε1). Two different initial topographies ("scale-free-like" and "extreme rich club-like") were each computationally brought to a CVM free energy minimum, for the case where the activation enthalpy was zero and different values were used for the interaction enthalpy. The results are: (1) the computational configuration variable results differ significantly from the analytically-predicted values well before ε1 approaches the known divergence as ε1→0.881, (2) the range of potentially useful parameter values, favoring clustering of like-with-like units, is limited to the region where ε0<3 and ε1<0.25, and (3) the topographies in the systems that are brought to a free energy minimum show interesting visual features, such as extended "spider legs" connecting previously unconnected "islands," and as well as evolution of "peninsulas" in what were previously solid masses.

摘要

表征二维图像地形的最大挑战之一是找到一个低维参数集,该参数集能够简洁地描述这些模式的本质,而非图像模式本身。1951年菊池引入的二维团簇变分法(CVM),可以使用构型变量来表征非常局部的图像模式分布,识别最近邻、次近邻和三重态构型。使用二维CVM,我们仅用两个参数就能表征二维地形;激活焓(ε0)和相互作用焓(ε1)。对于激活焓为零且相互作用焓使用不同值的情况,分别通过计算将两种不同的初始地形(“无标度类”和“极端富俱乐部类”)带到CVM自由能最小值。结果如下:(1)在ε1接近已知发散值ε1→0.881之前,计算得到的构型变量结果就与解析预测值有显著差异;(2)有利于同类单元聚类的潜在有用参数值范围限于ε0<3且ε1<0.25的区域;(3)达到自由能最小值的系统中的地形呈现出有趣的视觉特征,例如延伸的“蜘蛛腿”连接先前未连接的“岛屿”,以及先前为实心块的区域中“半岛”的演变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b28/7999889/82a7785b3e61/entropy-23-00319-g0A1.jpg

相似文献

3
Free energy distributions in proteins.蛋白质中的自由能分布。
Proteins. 2001 Dec 1;45(4):325-36. doi: 10.1002/prot.1153.
5
Enthalpy-entropy compensations in drug-DNA binding studies.药物与DNA结合研究中的焓-熵补偿
Proc Natl Acad Sci U S A. 1987 Dec;84(24):8922-6. doi: 10.1073/pnas.84.24.8922.
10
Understanding the mechanisms of solid-water reactions through analysis of surface topography.通过分析表面形貌来理解固-水反应的机制。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062114. doi: 10.1103/PhysRevE.92.062114. Epub 2015 Dec 8.

引用本文的文献

1
Entropy in Brain Networks.脑网络中的熵
Entropy (Basel). 2021 Sep 2;23(9):1157. doi: 10.3390/e23091157.
2
Cancer Niches and Their Kikuchi Free Energy.癌症微环境及其菊池自由能
Entropy (Basel). 2021 May 14;23(5):609. doi: 10.3390/e23050609.

本文引用的文献

1
Parcels and particles: Markov blankets in the brain.包裹与粒子:大脑中的马尔可夫毯
Netw Neurosci. 2021 Mar 1;5(1):211-251. doi: 10.1162/netn_a_00175. eCollection 2021.
2
Active Inference: Demystified and Compared.主动推断:去神秘化与比较。
Neural Comput. 2021 Mar;33(3):674-712. doi: 10.1162/neco_a_01357. Epub 2021 Jan 5.
4
Rich-club in the brain's macrostructure: Insights from graph theoretical analysis.大脑宏观结构中的富俱乐部:来自图论分析的见解
Comput Struct Biotechnol J. 2020 Jun 29;18:1761-1773. doi: 10.1016/j.csbj.2020.06.039. eCollection 2020.
6
An Investigation of the Free Energy Principle for Emotion Recognition.用于情绪识别的自由能量原理研究。
Front Comput Neurosci. 2020 Apr 22;14:30. doi: 10.3389/fncom.2020.00030. eCollection 2020.
10
Scale-free networks are rare.无标度网络很罕见。
Nat Commun. 2019 Mar 4;10(1):1017. doi: 10.1038/s41467-019-08746-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验