Suppr超能文献

鞑靼荞麦 () NAC 转录因子 FtNAC16 负调控荚果开裂和盐胁迫耐性。

Tartary Buckwheat () NAC Transcription Factors FtNAC16 Negatively Regulates of Pod Cracking and Salinity Tolerant in .

机构信息

College of Life Science, Sichuan Agricultural University, Ya'an 625000, China.

出版信息

Int J Mol Sci. 2021 Mar 21;22(6):3197. doi: 10.3390/ijms22063197.

Abstract

The thick and hard fruit shell of () represents a processing bottleneck. At the same time, soil salinization is one of the main problems faced by modern agricultural production. Bioinformatic analysis indicated that the transcription factor FtNAC16 could regulate the hull cracking of , and the function of this transcription factor was verified by genetic transformation of (). Phenotypic observations of the wild-type (WT), OE-FtNAC16, and -FtNAC16 plant lines confirmed that FtNAC16 negatively regulated pod cracking by downregulating lignin synthesis. Under salt stress, several physiological indicators (POD, GSH, Pro and MDA) were measured, leaves were stained with NBT (Nitroblue Tetrazolium) and DAB (3,3'-diaminobenzidine), and all genes encoding enzymes in the lignin synthesis pathway were analyzed. These experiments confirmed that FtNAC16 increased plant sensitivity by reducing the lignin content or changing the proportions of the lignin monomer. The results of this study may help to elucidate the possible association between changes in lignin monomer synthesis and salt stress and may also contribute to fully understanding the effects of FtNAC16 on plant growth and development, particularly regarding fruit pod cracking and environmental adaptability. In future studies, it may be useful to obtain suitable cracking varieties and salt-tolerant crops through molecular breeding.

摘要

()的厚而硬的果实壳代表了一个加工瓶颈。同时,土壤盐碱化是现代农业生产面临的主要问题之一。生物信息学分析表明,转录因子 FtNAC16 可以调节 的荚果开裂,并且通过 ()的遗传转化验证了该转录因子的功能。野生型 (WT)、OE-FtNAC16 和 -FtNAC16 植物系的表型观察证实 FtNAC16 通过下调木质素合成负调控荚果开裂。在盐胁迫下,测量了几种生理指标(POD、GSH、Pro 和 MDA),用 NBT(硝基四氮唑蓝)和 DAB(3,3'-二氨基联苯胺)染色 叶片,并分析了木质素合成途径中所有编码酶的基因。这些实验证实,FtNAC16 通过降低木质素含量或改变木质素单体的比例来增加植物的敏感性。本研究的结果可能有助于阐明木质素单体合成与盐胁迫之间的可能联系,并有助于充分了解 FtNAC16 对植物生长和发育的影响,特别是关于果实荚果开裂和环境适应性。在未来的研究中,通过分子育种获得合适的开裂品种和耐盐作物可能会很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80df/8061773/599ffacaaf6e/ijms-22-03197-g001.jpg

相似文献

2
Tartary buckwheat transcription factor FtbZIP83 improves the drought/salt tolerance of Arabidopsis via an ABA-mediated pathway.
Plant Physiol Biochem. 2019 Nov;144:312-323. doi: 10.1016/j.plaphy.2019.10.003. Epub 2019 Oct 5.
4
Gene Cloning and Characterization of Transcription Factor in Tartary Buckwheat ( (L.) Gaertn.).
Int J Mol Sci. 2023 Nov 14;24(22):16317. doi: 10.3390/ijms242216317.
8
A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/drought tolerance in Arabidopsis.
Plant Physiol Biochem. 2018 Nov;132:238-248. doi: 10.1016/j.plaphy.2018.09.012. Epub 2018 Sep 11.
9
Genome-wide investigation of the MADS gene family and dehulling genes in tartary buckwheat (Fagopyrum tataricum).
Planta. 2019 May;249(5):1301-1318. doi: 10.1007/s00425-019-03089-3. Epub 2019 Jan 7.
10
Genome-wide investigation of the ZF-HD gene family in Tartary buckwheat (Fagopyrum tataricum).
BMC Plant Biol. 2019 Jun 11;19(1):248. doi: 10.1186/s12870-019-1834-7.

引用本文的文献

1
Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants.
For Res (Fayettev). 2022 Jul 12;2:9. doi: 10.48130/FR-2022-0009. eCollection 2022.
2
Gene Cloning and Characterization of Transcription Factor in Tartary Buckwheat ( (L.) Gaertn.).
Int J Mol Sci. 2023 Nov 14;24(22):16317. doi: 10.3390/ijms242216317.
3
Cloning and expression analysis of gene in mung bean.
Open Life Sci. 2023 Jul 6;18(1):20220627. doi: 10.1515/biol-2022-0627. eCollection 2023.
4
The regulation of plant cell wall organisation under salt stress.
Front Plant Sci. 2023 Mar 10;14:1118313. doi: 10.3389/fpls.2023.1118313. eCollection 2023.
5
Genome-Wide Analysis of the Soybean TIFY Family and Identification of and Response to Salt Stress.
Front Plant Sci. 2022 Mar 23;13:845314. doi: 10.3389/fpls.2022.845314. eCollection 2022.

本文引用的文献

1
OsNAC45 is Involved in ABA Response and Salt Tolerance in Rice.
Rice (N Y). 2020 Dec 7;13(1):79. doi: 10.1186/s12284-020-00440-1.
3
AgNAC1, a celery transcription factor, related to regulation on lignin biosynthesis and salt tolerance.
Genomics. 2020 Nov;112(6):5254-5264. doi: 10.1016/j.ygeno.2020.09.049. Epub 2020 Sep 23.
4
Confers Drought Stress Tolerance in Transgenic Rice by Regulating Lignin Biosynthesis and ABA Signaling Pathway.
Front Plant Sci. 2020 Jun 18;11:785. doi: 10.3389/fpls.2020.00785. eCollection 2020.
7
Lignin deposition in chickpea root xylem under drought.
Plant Signal Behav. 2020 Jun 2;15(6):1754621. doi: 10.1080/15592324.2020.1754621. Epub 2020 Apr 14.
8
A WRKY transcription factor, FtWRKY46, from Tartary buckwheat improves salt tolerance in transgenic Arabidopsis thaliana.
Plant Physiol Biochem. 2020 Feb;147:43-53. doi: 10.1016/j.plaphy.2019.12.004. Epub 2019 Dec 4.
9
Lignin biosynthesis: old roads revisited and new roads explored.
Open Biol. 2019 Dec;9(12):190215. doi: 10.1098/rsob.190215. Epub 2019 Dec 4.
10
Tartary buckwheat transcription factor FtbZIP83 improves the drought/salt tolerance of Arabidopsis via an ABA-mediated pathway.
Plant Physiol Biochem. 2019 Nov;144:312-323. doi: 10.1016/j.plaphy.2019.10.003. Epub 2019 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验