Malysheva Khrystyna, Kwaśniak Konrad, Gnilitskyi Iaroslav, Barylyak Adriana, Zinchenko Viktor, Fahmi Amir, Korchynskyi Olexandr, Bobitski Yaroslav
Department of Human Immunology, Faculty of Medicine, University of Rzeszow, Warzywna 1A, 35-959 Rzeszow, Poland.
Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, Warzywna 1A, 35-959 Rzeszow, Poland.
Materials (Basel). 2021 Mar 10;14(6):1333. doi: 10.3390/ma14061333.
A capability for effective tissue reparation is a living requirement for all multicellular organisms. Bone exits as a precisely orchestrated balance of bioactivities of bone forming osteoblasts and bone resorbing osteoclasts. The main feature of osteoblasts is their capability to produce massive extracellular matrix enriched with calcium phosphate minerals. Hydroxyapatite and its composites represent the most common form of bone mineral providing mechanical strength and significant osteoinductive properties. Herein, hydroxyapatite and fluorapatite functionalized composite scaffolds based on electrospun polycaprolactone have been successfully fabricated. Physicochemical properties, biocompatibility and osteoinductivity of generated matrices have been validated. Both the hydroxyapatite and fluorapatite containing polycaprolactone composite scaffolds demonstrated good biocompatibility towards mesenchymal stem cells. Moreover, the presence of both hydroxyapatite and fluorapatite nanoparticles increased scaffolds' wettability. Furthermore, incorporation of fluorapatite nanoparticles enhanced the ability of the composite scaffolds to interact and support the mesenchymal stem cells attachment to their surfaces as compared to hydroxyapatite enriched composite scaffolds. The study of osteoinductive properties showed the capacity of fluorapatite and hydroxyapatite containing composite scaffolds to potentiate the stimulation of early stages of mesenchymal stem cells' osteoblast differentiation. Therefore, polycaprolactone based composite scaffolds functionalized with fluorapatite nanoparticles generates a promising platform for future bone tissue engineering applications.
有效的组织修复能力是所有多细胞生物生存的必要条件。骨骼以成骨的成骨细胞和破骨的破骨细胞的生物活性精确协调平衡的形式存在。成骨细胞的主要特征是它们能够产生富含磷酸钙矿物质的大量细胞外基质。羟基磷灰石及其复合材料是骨矿物质最常见的形式,具有机械强度和显著的骨诱导特性。在此,基于静电纺丝聚己内酯成功制备了羟基磷灰石和氟磷灰石功能化复合支架。所生成基质的物理化学性质、生物相容性和骨诱导性已得到验证。含羟基磷灰石和氟磷灰石的聚己内酯复合支架对间充质干细胞均表现出良好的生物相容性。此外,羟基磷灰石和氟磷灰石纳米颗粒的存在提高了支架的润湿性。此外,与富含羟基磷灰石的复合支架相比,氟磷灰石纳米颗粒的掺入增强了复合支架与间充质干细胞相互作用并支持其附着在表面的能力。骨诱导特性研究表明,含氟磷灰石和羟基磷灰石的复合支架具有增强间充质干细胞成骨分化早期刺激的能力。因此,用氟磷灰石纳米颗粒功能化的聚己内酯基复合支架为未来的骨组织工程应用提供了一个有前景的平台。