Suppr超能文献

MaxCal与其他随机建模方法在基因网络分析中的关键比较

Critical Comparison of MaxCal and Other Stochastic Modeling Approaches in Analysis of Gene Networks.

作者信息

Firman Taylor, Huihui Jonathan, Clark Austin R, Ghosh Kingshuk

机构信息

Molecular and Cellular Biophysics, University of Denver, Denver, CO 80208, USA.

Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA.

出版信息

Entropy (Basel). 2021 Mar 17;23(3):357. doi: 10.3390/e23030357.

Abstract

Learning the underlying details of a gene network with feedback is critical in designing new synthetic circuits. Yet, quantitative characterization of these circuits remains limited. This is due to the fact that experiments can only measure partial information from which the details of the circuit must be inferred. One potentially useful avenue is to harness hidden information from single-cell stochastic gene expression time trajectories measured for long periods of time-recorded at frequent intervals-over multiple cells. This raises the feasibility vs. accuracy dilemma while deciding between different models of mining these stochastic trajectories. We demonstrate that inference based on the Maximum Caliber (MaxCal) principle is the method of choice by critically evaluating its computational efficiency and accuracy against two other typical modeling approaches: (i) a detailed model (DM) with explicit consideration of multiple molecules including protein-promoter interaction, and (ii) a coarse-grain model (CGM) using Hill type functions to model feedback. MaxCal provides a reasonably accurate model while being significantly more computationally efficient than DM and CGM. Furthermore, MaxCal requires minimal assumptions since it is a top-down approach and allows systematic model improvement by including constraints of higher order, in contrast to traditional bottom-up approaches that require more parameters or ad hoc assumptions. Thus, based on efficiency, accuracy, and ability to build minimal models, we propose MaxCal as a superior alternative to traditional approaches (DM, CGM) when inferring underlying details of gene circuits with feedback from limited data.

摘要

了解具有反馈的基因网络的潜在细节对于设计新的合成电路至关重要。然而,这些电路的定量表征仍然有限。这是因为实验只能测量部分信息,而电路的细节必须从这些信息中推断出来。一个潜在有用的途径是利用从长时间以频繁间隔记录的多个细胞的单细胞随机基因表达时间轨迹中获取的隐藏信息。在决定挖掘这些随机轨迹的不同模型时,这就引发了可行性与准确性的两难问题。我们通过将基于最大口径(MaxCal)原理的推理与另外两种典型建模方法进行严格的计算效率和准确性评估,证明了基于最大口径(MaxCal)原理的推理是首选方法:(i)一种详细模型(DM),明确考虑了包括蛋白质 - 启动子相互作用在内的多个分子;(ii)一种使用希尔型函数对反馈进行建模的粗粒度模型(CGM)。MaxCal提供了一个相当准确的模型,同时在计算效率上比DM和CGM高得多。此外,MaxCal所需的假设最少,因为它是一种自上而下的方法,与需要更多参数或特殊假设的传统自下而上方法相比,它允许通过纳入高阶约束进行系统的模型改进。因此,基于效率、准确性和构建最小模型的能力,我们建议在从有限数据推断具有反馈的基因电路的潜在细节时,MaxCal是传统方法(DM,CGM)的一种优越替代方案。

相似文献

3
Maximum Caliber Can Characterize Genetic Switches with Multiple Hidden Species.最大口径可表征具有多个隐藏种的遗传开关。
J Phys Chem B. 2018 May 31;122(21):5666-5677. doi: 10.1021/acs.jpcb.7b12251. Epub 2018 Feb 15.
7
Maximum caliber inference of nonequilibrium processes.最大口径推断非平衡过程。
J Chem Phys. 2010 Jul 21;133(3):034119. doi: 10.1063/1.3455333.
8
Using Models to (Re-)Design Synthetic Circuits.利用模型(重新)设计合成电路。
Methods Mol Biol. 2021;2229:91-118. doi: 10.1007/978-1-0716-1032-9_3.
9
Principle of maximum caliber and quantum physics.最大口径原则和量子物理学。
Phys Rev E. 2018 Jul;98(1-1):012110. doi: 10.1103/PhysRevE.98.012110.

本文引用的文献

2
The Maximum Caliber Variational Principle for Nonequilibria.非平衡态的最大口径变分原理。
Annu Rev Phys Chem. 2020 Apr 20;71:213-238. doi: 10.1146/annurev-physchem-071119-040206. Epub 2020 Feb 19.
5
Maximum Caliber Can Characterize Genetic Switches with Multiple Hidden Species.最大口径可表征具有多个隐藏种的遗传开关。
J Phys Chem B. 2018 May 31;122(21):5666-5677. doi: 10.1021/acs.jpcb.7b12251. Epub 2018 Feb 15.
9
Build to understand: synthetic approaches to biology.为理解而构建:生物学的合成方法。
Integr Biol (Camb). 2016 Apr 18;8(4):394-408. doi: 10.1039/c5ib00252d. Epub 2015 Dec 21.
10
Applications of synthetic gene networks.合成基因网络的应用。
Sci Prog. 2015;98(Pt 3):244-52. doi: 10.3184/003685015X14368807556441.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验