Gamonales José M, León Kiko, Rojas-Valverde Daniel, Sánchez-Ureña Braulio, Muñoz-Jiménez Jesús
Facultad Ciencias del Deporte, Universidad de Extremadura, 10005 Cáceres, Spain.
Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia 86-3000, Costa Rica.
Int J Environ Res Public Health. 2021 Mar 18;18(6):3155. doi: 10.3390/ijerph18063155.
(1) Background: Data mining has turned essential when exploring a large amount of information in performance analysis in sports. This study aimed to select the most relevant variables influencing the external and internal load in top-elite 5-a-side soccer (Sa5) using a data mining model considering some contextual indicators as match result, body mass index (BMI), scoring rate and age. (2) Methods: A total of 50 top-elite visually impaired soccer players (age 30.86 ± 11.2 years, weight 77.64 ± 9.78 kg, height 178.48 ± 7.9 cm) were monitored using magnetic, angular and rate gyroscope (MARG) sensors during an international Sa5 congested fixture tournament.; (3) Results: Fifteen external and internal load variables were extracted from a total of 49 time-related and peak variables derived from the MARG sensors using a principal component analysis as the most used data mining technique. The principal component analysis (PCA) model explained 80% of total variance using seven principal components. In contrast, the first principal component of the match was defined by jumps, take off by 24.8% of the total variance. Blind players usually performed a higher number of accelerations per min when losing a match. Scoring players execute higher Distance and Distance. And the younger players presented higher HR and Acc. (4) Conclusions: The influence of some contextual variables on external and internal load during top elite Sa5 official matches should be addressed by coaches, athletes, and medical staff. The PCA seems to be a useful statistical technique to select those relevant variables representing the team's external and internal load. Besides, as a data reduction method, PCA allows administrating individualized training loads considering those relevant variables defining team load behavior.
(1) 背景:在体育比赛成绩分析中探索大量信息时,数据挖掘变得至关重要。本研究旨在使用数据挖掘模型,选择影响顶级五人制足球(Sa5)外部和内部负荷的最相关变量,该模型考虑了一些情境指标,如比赛结果、体重指数(BMI)、得分率和年龄。(2) 方法:在一场国际Sa5密集赛程比赛中,使用磁、角和速率陀螺仪(MARG)传感器对总共50名顶级视障足球运动员(年龄30.86±11.2岁,体重77.64±9.78千克,身高178.48±7.9厘米)进行监测。(3) 结果:使用主成分分析作为最常用的数据挖掘技术,从MARG传感器获得的总共49个与时间相关的和峰值变量中提取了15个外部和内部负荷变量。主成分分析(PCA)模型使用七个主成分解释了总方差的80%。相比之下,比赛的第一个主成分由跳跃定义,起跳占总方差的24.8%。盲人球员在输球时通常每分钟进行更多的加速。得分球员执行更高的距离和位移。并且年轻球员表现出更高的心率和加速度。(4) 结论:教练、运动员和医务人员应关注一些情境变量对顶级精英Sa5正式比赛期间外部和内部负荷的影响。主成分分析似乎是一种有用的统计技术,可用于选择那些代表球队外部和内部负荷的相关变量。此外,作为一种数据降维方法,主成分分析允许根据定义球队负荷行为的那些相关变量来管理个性化训练负荷。