Suppr超能文献

HIV-1 蛋白酶中上位性的分子决定因素:阐明耐药性中 L89V 和 L90M 突变的相互依赖性。

Molecular Determinants of Epistasis in HIV-1 Protease: Elucidating the Interdependence of L89V and L90M Mutations in Resistance.

出版信息

Biochemistry. 2019 Sep 3;58(35):3711-3726. doi: 10.1021/acs.biochem.9b00446. Epub 2019 Aug 19.

Abstract

Protease inhibitors have the highest potency among antiviral therapies against HIV-1 infections, yet the virus can evolve resistance. Darunavir (DRV), currently the most potent Food and Drug Administration-approved protease inhibitor, retains potency against single-site mutations. However, complex combinations of mutations can confer resistance to DRV. While the interdependence between mutations within HIV-1 protease is key for inhibitor potency, the molecular mechanisms that underlie this control remain largely unknown. In this study, we investigated the interdependence between the L89V and L90M mutations and their effects on DRV binding. These two mutations have been reported to be positively correlated with one another in HIV-1 patient-derived protease isolates, with the presence of one mutation making the probability of the occurrence of the second mutation more likely. The focus of our investigation is a patient-derived isolate, with 24 mutations that we call "KY"; this variant includes the L89V and L90M mutations. Three additional KY variants with back-mutations, KY(V89L), KY(M90L), and the KY(V89L/M90L) double mutation, were used to experimentally assess the individual and combined effects of these mutations on DRV inhibition and substrate processing. The enzymatic assays revealed that the KY(V89L) variant, with methionine at residue 90, is highly resistant, but its catalytic function is compromised. When a leucine to valine mutation at residue 89 is present simultaneously with the L90M mutation, a rescue of catalytic efficiency is observed. Molecular dynamics simulations of these DRV-bound protease variants reveal how the L90M mutation induces structural changes throughout the enzyme that undermine the binding interactions.

摘要

蛋白酶抑制剂是对抗 HIV-1 感染的抗病毒疗法中效力最高的一类药物,但病毒会产生耐药性。达芦那韦(DRV)是目前美国食品和药物管理局批准的效力最强的蛋白酶抑制剂,对单点突变仍保持效力。然而,复杂的突变组合可以使 DRV 产生耐药性。虽然 HIV-1 蛋白酶内突变之间的相互依存关系是抑制剂效力的关键,但这种控制的分子机制在很大程度上仍然未知。在这项研究中,我们研究了 L89V 和 L90M 突变之间的相互依存关系及其对 DRV 结合的影响。这两种突变已在 HIV-1 患者来源的蛋白酶分离株中被报道呈正相关,其中一种突变的存在使第二种突变发生的概率更高。我们研究的重点是一种患者来源的分离株,该分离株有 24 个突变,我们称之为“KY”;该变体包括 L89V 和 L90M 突变。另外三个带有回突的 KY 变体,即 KY(V89L)、KY(M90L)和 KY(V89L/M90L)双重突变,被用于实验评估这些突变对 DRV 抑制和底物加工的单独和组合影响。酶促分析表明,第 90 位残基为蛋氨酸的 KY(V89L)变体高度耐药,但催化功能受损。当第 89 位残基的亮氨酸突变为缬氨酸,同时存在 L90M 突变时,观察到催化效率的恢复。这些与 DRV 结合的蛋白酶变体的分子动力学模拟揭示了 L90M 突变如何诱导整个酶的结构变化,破坏了结合相互作用。

相似文献

引用本文的文献

6
Viral proteases: Structure, mechanism and inhibition.病毒蛋白酶:结构、机制与抑制。
Enzymes. 2021;50:301-333. doi: 10.1016/bs.enz.2021.09.004. Epub 2021 Nov 17.
9
Inhibiting HTLV-1 Protease: A Viable Antiviral Target.抑制 HTLV-1 蛋白酶:一种可行的抗病毒靶点。
ACS Chem Biol. 2021 Mar 19;16(3):529-538. doi: 10.1021/acschembio.0c00975. Epub 2021 Feb 23.

本文引用的文献

3
Elucidating the Interdependence of Drug Resistance from Combinations of Mutations.阐明耐药性与突变组合的相互依存关系。
J Chem Theory Comput. 2017 Nov 14;13(11):5671-5682. doi: 10.1021/acs.jctc.7b00601. Epub 2017 Oct 9.
5
Interdependence of Inhibitor Recognition in HIV-1 Protease.HIV-1蛋白酶中抑制剂识别的相互依赖性
J Chem Theory Comput. 2017 May 9;13(5):2300-2309. doi: 10.1021/acs.jctc.6b01262. Epub 2017 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验