Suppr超能文献

产前母体脂多糖和轻度新生儿高氧增加小鼠模型肺内气道而非血管反应性。

Prenatal Maternal Lipopolysaccharide and Mild Newborn Hyperoxia Increase Intrapulmonary Airway but Not Vessel Reactivity in a Mouse Model.

作者信息

Kuper-Sassé Margaret E, MacFarlane Peter M, Mayer Catherine A, Martin Richard J, Prakash Y S, Pabelick Christina M, Raffay Thomas M

机构信息

Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA.

Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

Children (Basel). 2021 Mar 5;8(3):195. doi: 10.3390/children8030195.

Abstract

Maternal infection is a risk for preterm delivery. Preterm newborns often require supplemental oxygen to treat neonatal respiratory distress. Newborn hyperoxia exposure is associated with airway and vascular hyperreactivity, while the complications of maternal infection are variable. In a mouse model of prenatal maternal intraperitoneal lipopolysaccharide (LPS, embryonic day 18) with subsequent newborn hyperoxia (40% oxygen × 7 days) precision-cut living lung slices were used to measure intrapulmonary airway and vascular reactivity at 21 days of age. Hyperoxia increased airway reactivity to methacholine compared to room air controls. Prenatal maternal LPS did not alter airway reactivity in room air. Combined maternal LPS and hyperoxia exposures increased airway reactivity vs. controls, although maximal responses were diminished compared to hyperoxia alone. Vessel reactivity to serotonin did not significantly differ in hyperoxia or room air; however, prenatal maternal LPS appeared to attenuate vessel reactivity in room air. Following room air recovery, LPS with hyperoxia lungs displayed upregulated inflammatory and fibrosis genes compared to room air saline controls (TNFαR1, iNOS, and TGFβ). In this model, mild newborn hyperoxia increases airway but not vessel reactivity. Prenatal maternal LPS did not further increase hyperoxic airway reactivity. However, inflammatory genes remain upregulated weeks after recovery from maternal LPS and newborn hyperoxia exposures.

摘要

母体感染是早产的一个风险因素。早产新生儿通常需要补充氧气来治疗新生儿呼吸窘迫。新生儿高氧暴露与气道和血管高反应性有关,而母体感染的并发症则各不相同。在一个产前母体腹腔注射脂多糖(LPS,胚胎第18天)随后新生儿高氧暴露(40%氧气×7天)的小鼠模型中,使用精确切割的活肺切片在21日龄时测量肺内气道和血管反应性。与室内空气对照组相比,高氧增加了气道对乙酰甲胆碱的反应性。产前母体LPS在室内空气中并未改变气道反应性。母体LPS和高氧联合暴露与对照组相比增加了气道反应性,尽管最大反应与单独高氧暴露相比有所减弱。血管对5-羟色胺的反应性在高氧或室内空气中没有显著差异;然而,产前母体LPS似乎减弱了室内空气中血管的反应性。在室内空气恢复后,与室内空气生理盐水对照组相比,LPS与高氧肺显示炎症和纤维化基因上调(TNFαR1、iNOS和TGFβ)。在这个模型中,轻度新生儿高氧增加气道但不增加血管反应性。产前母体LPS并未进一步增加高氧气道反应性。然而,从母体LPS和新生儿高氧暴露恢复数周后,炎症基因仍上调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c4c/7998377/ee7a03ec9d9c/children-08-00195-g001.jpg

相似文献

2
Neonatal hyperoxia increases airway reactivity and inflammation in adult mice.
Pediatr Pulmonol. 2016 Nov;51(11):1131-1141. doi: 10.1002/ppul.23430. Epub 2016 Apr 26.
5
Severity of neonatal hyperoxia determines structural and functional changes in developing mouse airway.
Am J Physiol Lung Cell Mol Physiol. 2014 Aug 15;307(4):L295-301. doi: 10.1152/ajplung.00208.2013. Epub 2014 Jun 20.
6
Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure.
J Appl Physiol (1985). 2010 May;108(5):1347-56. doi: 10.1152/japplphysiol.01392.2009. Epub 2010 Mar 11.
7
Airway Hyperreactivity Is Delayed after Mild Neonatal Hyperoxic Exposure.
Neonatology. 2015;108(1):65-72. doi: 10.1159/000380758. Epub 2015 May 22.
8
Intra-amniotic LPS amplifies hyperoxia-induced airway hyperreactivity in neonatal rats.
Pediatr Res. 2013 Jul;74(1):11-8. doi: 10.1038/pr.2013.58. Epub 2013 Apr 5.
10
Quercetin supplementation attenuates airway hyperreactivity and restores airway relaxation in rat pups exposed to hyperoxia.
Exp Biol Med (Maywood). 2023 Sep;248(17):1492-1499. doi: 10.1177/15353702231199468. Epub 2023 Oct 14.

引用本文的文献

1
When prenatal infection meets postnatal hyperoxia: Better models for bronchopulmonary dysplasia and its therapeutic approaches.
Chin Med J Pulm Crit Care Med. 2024 Dec 13;2(4):289-292. doi: 10.1016/j.pccm.2024.11.002. eCollection 2024 Dec.
2
Oxygen and mechanical stretch in the developing lung: risk factors for neonatal and pediatric lung disease.
Front Med (Lausanne). 2023 Jun 19;10:1214108. doi: 10.3389/fmed.2023.1214108. eCollection 2023.

本文引用的文献

1
Early Neonatal Oxygen Exposure Predicts Pulmonary Morbidity and Functional Deficits at 1 Year.
J Pediatr. 2020 Aug;223:20-28.e2. doi: 10.1016/j.jpeds.2020.04.042.
2
Pulmonary mechanics and structural lung development after neonatal hyperoxia in mice.
Pediatr Res. 2020 Jun;87(7):1201-1210. doi: 10.1038/s41390-019-0723-y. Epub 2019 Dec 13.
3
Interleukin-1 Receptor Antagonist Protects Newborn Mice Against Pulmonary Hypertension.
Front Immunol. 2019 Jul 11;10:1480. doi: 10.3389/fimmu.2019.01480. eCollection 2019.
4
Rodent models of respiratory control and respiratory system development-Clinical significance.
Respir Physiol Neurobiol. 2019 Oct;268:103249. doi: 10.1016/j.resp.2019.06.006. Epub 2019 Jul 14.
7
Bronchopulmonary dysplasia: Pathophysiology and potential anti-inflammatory therapies.
Paediatr Respir Rev. 2019 Apr;30:34-41. doi: 10.1016/j.prrv.2018.07.007. Epub 2018 Jul 29.
9
Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD).
Food Chem Toxicol. 2018 Apr;114:23-33. doi: 10.1016/j.fct.2018.02.026. Epub 2018 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验