Suppr超能文献

探索脑电图特征以识别电子游戏场景下的情绪反应。

Exploring EEG Characteristics to Identify Emotional Reactions under Videogame Scenarios.

作者信息

Martínez-Tejada Laura Alejandra, Puertas-González Alex, Yoshimura Natsue, Koike Yasuharu

机构信息

FIRST Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan.

System Engineering and Computation School, Universidad Pedagógica y Tecnológica de Colombia, Santiago de Tunja 150007, Colombia.

出版信息

Brain Sci. 2021 Mar 16;11(3):378. doi: 10.3390/brainsci11030378.

Abstract

In this article we present the study of electroencephalography (EEG) traits for emotion recognition process using a videogame as a stimuli tool, and considering two different kind of information related to emotions: arousal-valence self-assesses answers from participants, and game events that represented positive and negative emotional experiences under the videogame context. We performed a statistical analysis using Spearman's correlation between the EEG traits and the emotional information. We found that EEG traits had strong correlation with arousal and valence scores; also, common EEG traits with strong correlations, belonged to the theta band of the central channels. Then, we implemented a regression algorithm with feature selection to predict arousal and valence scores using EEG traits. We achieved better result for arousal regression, than for valence regression. EEG traits selected for arousal and valence regression belonged to time domain (standard deviation, complexity, mobility, kurtosis, skewness), and frequency domain (power spectral density-PDS, and differential entropy-DE from theta, alpha, beta, gamma, and all EEG frequency spectrum). Addressing game events, we found that EEG traits related with the theta, alpha and beta band had strong correlations. In addition, distinctive event-related potentials where identified in the presence of both types of game events. Finally, we implemented a classification algorithm to discriminate between positive and negative events using EEG traits to identify emotional information. We obtained good classification performance using only two traits related with frequency domain on the theta band and on the full EEG spectrum.

摘要

在本文中,我们展示了一项关于脑电图(EEG)特征的研究,该研究以一款电子游戏作为刺激工具来进行情绪识别过程,并考虑了与情绪相关的两种不同类型的信息:参与者的唤醒 - 效价自我评估答案,以及在电子游戏情境下代表积极和消极情绪体验的游戏事件。我们使用斯皮尔曼相关性对脑电图特征与情绪信息进行了统计分析。我们发现脑电图特征与唤醒和效价得分具有很强的相关性;此外,具有强相关性的常见脑电图特征属于中央通道的θ频段。然后,我们实现了一种带有特征选择的回归算法,以使用脑电图特征来预测唤醒和效价得分。我们在唤醒回归方面取得了比效价回归更好的结果。为唤醒和效价回归选择的脑电图特征属于时域(标准差、复杂度、移动性、峰度、偏度)和频域(功率谱密度 - PDS,以及来自θ、α、β、γ和所有脑电图频谱的微分熵 - DE)。针对游戏事件,我们发现与θ、α和β频段相关的脑电图特征具有很强的相关性。此外,在两种类型的游戏事件出现时识别出了独特的事件相关电位。最后,我们实现了一种分类算法,使用脑电图特征来区分积极和消极事件,以识别情绪信息。我们仅使用与θ频段和全脑电图频谱上的频域相关的两个特征就获得了良好的分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3bc/8002589/47c3f82f24d0/brainsci-11-00378-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验