Suppr超能文献

切割时表现和受伤风险的生物力学决定因素:表现-受伤冲突?

Biomechanical Determinants of Performance and Injury Risk During Cutting: A Performance-Injury Conflict?

机构信息

Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, All Saints Building, Manchester Campus John Dalton Building, Manchester Campus, Manchester, M15 6BH, UK.

Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, UK.

出版信息

Sports Med. 2021 Sep;51(9):1983-1998. doi: 10.1007/s40279-021-01448-3. Epub 2021 Apr 3.

Abstract

BACKGROUND

Most cutting biomechanical studies investigate performance and knee joint load determinants independently. This is surprising because cutting is an important action linked to performance and non-contact anterior cruciate ligament (ACL) injuries. The aim of this study was to investigate the relationship between cutting biomechanics and cutting performance (completion time, ground contact time [GCT], exit velocity) and surrogates of non-contact ACL injury risk (knee abduction [KAM] and internal rotation [KIRM] moments) during 90° cutting.

DESIGN

Mixed, cross-sectional study following an associative design. 61 males from multidirectional sports performed six 90° pre-planned cutting trials, whereby lower-limb and trunk kinetics and kinematics were evaluated using three-dimensional (3D) motion and ground reaction force analysis over the penultimate (PFC) and final foot contact (FFC). Pearson's and Spearman's correlations were used to explore the relationships between biomechanical variables and cutting performance and injury risk variables. Stepwise regression analysis was also performed.

RESULTS

Faster cutting performance was associated (p ≤ 0.05) with greater centre of mass (COM) velocities at key instances of the cut (r or ρ = 0.533-0.752), greater peak and mean propulsive forces (r or ρ = 0.449-0.651), shorter FFC GCTs (r or ρ = 0.569-0.581), greater FFC and PFC braking forces (r = 0.430-0.551), smaller hip and knee flexion range of motion (r or ρ = 0.406-0.670), greater knee flexion moments (KFMs) (r = 0.482), and greater internal foot progression angles (r = - 0.411). Stepwise multiple regression analysis revealed that exit velocity, peak resultant propulsive force, PFC mean horizontal braking force, and initial foot progression angle together could explain 64% (r = 0.801, adjusted 61.6%, p = 0.048) of the variation in completion time. Greater peak KAMs were associated with greater COM velocities at key instances of the cut (r or ρ = - 0.491 to - 0.551), greater peak knee abduction angles (KAA) (r = - 0.468), and greater FFC braking forces (r = 0.434-0.497). Incidentally, faster completion times were associated with greater peak KAMs (r = - 0.412) and KIRMs (r = 0.539). Stepwise multiple regression analysis revealed that FFC mean vertical braking force and peak KAA together could explain 43% (r = 0.652, adjusted 40.6%, p < 0.001) of the variation peak KAM.

CONCLUSION

Techniques and mechanics associated with faster cutting (i.e. faster COM velocities, greater FFC braking forces in short GCTs, greater KFMs, smaller hip and knee flexion, and greater internal foot progression angles) are in direct conflict with safer cutting mechanics (i.e. reduced knee joint loading, thus ACL injury risk), and support the "performance-injury conflict" concept during cutting. Practitioners should be conscious of this conflict when instructing cutting techniques to optimise performance while minimising knee joint loading, and should, therefore, ensure that their athletes have the physical capacity (i.e. neuromuscular control, co-contraction, and rapid force production) to tolerate and support the knee joint loading during cutting.

摘要

背景

大多数切割生物力学研究分别研究性能和膝关节负荷决定因素。这令人惊讶,因为切割是与表现和非接触性前交叉韧带(ACL)损伤相关的重要动作。本研究的目的是调查切割生物力学与切割性能(完成时间、地面接触时间[GCT]、出口速度)和非接触性 ACL 损伤风险的替代指标(膝关节外展[KAM]和内旋[KIRM]力矩)之间的关系在 90°切割过程中。

设计

遵循关联设计的混合、横截面研究。来自多向运动的 61 名男性进行了六次 90°预先计划的切割试验,通过三维(3D)运动和地面反力分析评估下肢和躯干动力学和运动学,在倒数第二个(PFC)和最终脚接触(FFC)时。使用 Pearson 和 Spearman 相关性分析来探索生物力学变量与切割性能和损伤风险变量之间的关系。还进行了逐步回归分析。

结果

更快的切割性能与切割过程中关键时刻的质心(COM)速度(r 或 ρ = 0.533-0.752)、更大的峰值和平均推进力(r 或 ρ = 0.449-0.651)、更短的 FFC GCTs(r 或 ρ = 0.569-0.581)、更大的 FFC 和 PFC 制动力(r = 0.430-0.551)、髋关节和膝关节屈曲范围较小(r 或 ρ = 0.406-0.670)、更大的膝关节屈曲力矩(KFMs)(r = 0.482)和更大的内足前进角度(r = -0.411)相关。逐步多元回归分析表明,出口速度、峰值合成推进力、PFC 平均水平制动力和初始足前进角度可以共同解释完成时间变化的 64%(r = 0.801,调整 61.6%,p = 0.048)。更大的峰值 KAMs 与切割过程中关键时刻的 COM 速度更大(r 或 ρ = -0.491 至-0.551)、更大的峰值膝关节外展角度(KAA)(r = -0.468)和更大的 FFC 制动力(r = 0.434-0.497)相关。顺便说一句,更快的完成时间与更大的峰值 KAMs(r = -0.412)和 KIRMs(r = 0.539)相关。逐步多元回归分析表明,FFC 平均垂直制动力和峰值 KAA 共同可以解释峰值 KAM 变化的 43%(r = 0.652,调整 40.6%,p < 0.001)。

结论

与更快切割(即更快的 COM 速度、更短的 GCT 中的更大的 FFC 制动力、更大的 KFMs、更小的髋关节和膝关节屈曲以及更大的内足前进角度)相关的技术和力学与更安全的切割力学直接冲突(即减少膝关节负荷,从而降低 ACL 损伤风险),并支持切割过程中的“性能-损伤冲突”概念。在指导切割技术时,从业者应该意识到这种冲突,以优化性能,同时最小化膝关节负荷,并确保他们的运动员具有承受和支持膝关节负荷的身体能力(即神经肌肉控制、共同收缩和快速力量产生)在切割过程中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cc3/8363537/b92072477014/40279_2021_1448_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验