Suppr超能文献

一种用于人类胎儿心脏四维超声图像的去噪与增强方法框架。

A denoising and enhancing method framework for 4D ultrasound images of human fetal heart.

作者信息

Liu Bin, Xu Zhao, Wang Qifeng, Niu Xiaolei, Chan Wei Xuan, Hadi Wiputra, Yap Choon Hwai

机构信息

International School of Information Science & Engineering (DUT-RUISE), Dalian University of Technology, Dalian, China.

Key Lab of Ubiquitous Network and Service Software of Liaoning Province, Dalian University of Technology, Dalian, China.

出版信息

Quant Imaging Med Surg. 2021 Apr;11(4):1567-1585. doi: 10.21037/qims-20-818.

Abstract

BACKGROUND

4D ultrasound images of human fetal heart are important for medical applications such as evaluation of fetal heart function and early diagnosis of congenital heart diseases. However, due to the high noise and low contrast characteristics in fetal ultrasound images, denoising and enhancements are important.

METHODS

In this paper, a special method framework for denoising and enhancing is proposed. It consists of a 4D-NLM (non-local means) denoising method for 4D fetal heart ultrasound image sequence, which takes advantage of context similar information in neighboring images to denoise the target image, and an enhancing method called the Adaptive Clipping for Each Histogram Pillar (ACEHP), which is designed to enhance myocardial spaces to distinguish them from blood spaces.

RESULTS

Denoising and enhancing experiments show that 4D-NLM method has better denoising effect than several classical and state-of-the-art methods such as NLM and WNNM. Similarly, ACEHP method can keep noise level low while enhancing myocardial regions better than several classical and state-of-the-art methods such as CLAHE and SVDDWT. Furthermore, in the volume rendering after the combined "4D-NLM+ACEHP" processing, the cardiac lumen is clear and the boundary is neat. The Entropy value that can be achieved by our method framework (4D-NLM+ACEHP) is 4.84.

CONCLUSIONS

Our new framework can thus provide important improvements to clinical fetal heart ultrasound images.

摘要

背景

人类胎儿心脏的四维超声图像对于诸如评估胎儿心脏功能和先天性心脏病早期诊断等医学应用非常重要。然而,由于胎儿超声图像具有高噪声和低对比度的特点,去噪和增强处理很重要。

方法

本文提出了一种特殊的去噪和增强方法框架。它由一种用于四维胎儿心脏超声图像序列的4D-NLM(非局部均值)去噪方法和一种名为“每个直方图柱自适应裁剪”(ACEHP)的增强方法组成。4D-NLM方法利用相邻图像中的上下文相似信息对目标图像进行去噪,ACEHP方法旨在增强心肌区域以使其与血液区域区分开来。

结果

去噪和增强实验表明,4D-NLM方法比诸如NLM和WNNM等几种经典和最新的方法具有更好的去噪效果。同样,ACEHP方法在保持低噪声水平的同时,比诸如CLAHE和SVDDWT等几种经典和最新的方法能更好地增强心肌区域。此外,在经过“4D-NLM+ACEHP”组合处理后的体绘制中,心脏腔清晰且边界整齐。我们的方法框架(4D-NLM+ACEHP)能够达到的熵值为4.84。

结论

因此,我们的新框架能够为临床胎儿心脏超声图像带来重要改进。

相似文献

1
A denoising and enhancing method framework for 4D ultrasound images of human fetal heart.
Quant Imaging Med Surg. 2021 Apr;11(4):1567-1585. doi: 10.21037/qims-20-818.
2
Adaptive nonlocal means filtering based on local noise level for CT denoising.
Med Phys. 2014 Jan;41(1):011908. doi: 10.1118/1.4851635.
3
Real-time denoising of ultrasound images based on deep learning.
Med Biol Eng Comput. 2022 Aug;60(8):2229-2244. doi: 10.1007/s11517-022-02573-5. Epub 2022 Jun 7.
4
Dynamic PET image reconstruction utilizing intrinsic data-driven HYPR4D denoising kernel.
Med Phys. 2021 May;48(5):2230-2244. doi: 10.1002/mp.14751. Epub 2021 Mar 22.
5
Non-local means denoising of dynamic PET images.
PLoS One. 2013 Dec 5;8(12):e81390. doi: 10.1371/journal.pone.0081390. eCollection 2013.
6
Denoising Magnetic Resonance Images Using Collaborative Non-Local Means.
Neurocomputing (Amst). 2016 Feb 12;177:215-227. doi: 10.1016/j.neucom.2015.11.031.
7
COLLABORATIVE NON-LOCAL MEANS DENOISING OF MAGNETIC RESONANCE IMAGES.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:564-567. doi: 10.1109/isbi.2015.7163936. Epub 2015 Jul 23.
8
A hybrid algorithm for speckle noise reduction of ultrasound images.
Comput Methods Programs Biomed. 2017 Sep;148:55-69. doi: 10.1016/j.cmpb.2017.06.009. Epub 2017 Jun 23.
9
[A diffusion-weighted image denoising algorithm using HOSVD combined with Rician noise corrected model].
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Aug 31;41(9):1400-1408. doi: 10.12122/j.issn.1673-4254.2021.09.16.
10
Fetal cardiac function by three-dimensional ultrasound using 4D-STIC and VOCAL - an update.
J Ultrason. 2019 Dec;19(79):287-294. doi: 10.15557/JoU.2019.0043. Epub 2019 Dec 31.

引用本文的文献

2
Optical ultrasound sensors for photoacoustic imaging: a narrative review.
Quant Imaging Med Surg. 2022 Feb;12(2):1608-1631. doi: 10.21037/qims-21-605.

本文引用的文献

1
Despeckling of clinical ultrasound images using deep residual learning.
Comput Methods Programs Biomed. 2020 Oct;194:105477. doi: 10.1016/j.cmpb.2020.105477. Epub 2020 May 15.
2
High-frequency ultrasound deformation imaging for adult zebrafish during heart regeneration.
Quant Imaging Med Surg. 2020 Jan;10(1):66-75. doi: 10.21037/qims.2019.09.20.
5
Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model.
IEEE Trans Image Process. 2018 Jun;27(6):2828-2841. doi: 10.1109/TIP.2018.2810539.
6
The new 3D/4D based spatio-temporal imaging correlation (STIC) in fetal echocardiography: a promising tool for the future.
J Matern Fetal Neonatal Med. 2014 Jul;27(11):1163-8. doi: 10.3109/14767058.2013.847423. Epub 2013 Oct 24.
7
Nonlocally centralized sparse representation for image restoration.
IEEE Trans Image Process. 2013 Apr;22(4):1620-30. doi: 10.1109/TIP.2012.2235847. Epub 2012 Dec 21.
8
A generalized unsharp masking algorithm.
IEEE Trans Image Process. 2011 May;20(5):1249-61. doi: 10.1109/TIP.2010.2092441. Epub 2010 Nov 15.
9
Globally optimized linear windowed tone mapping.
IEEE Trans Vis Comput Graph. 2010 Jul-Aug;16(4):663-75. doi: 10.1109/TVCG.2009.92.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验