Suppr超能文献

用于使用X光图像检测新冠肺炎的卷积胶囊网络。

Convolutional capsule network for COVID-19 detection using radiography images.

作者信息

Tiwari Shamik, Jain Anurag

机构信息

Department of Virtualization, School of Computer Science University of Petroleum and Energy Studies Dehradun Uttarakhand India.

出版信息

Int J Imaging Syst Technol. 2021 Jun;31(2):525-539. doi: 10.1002/ima.22566. Epub 2021 Mar 2.

Abstract

Novel corona virus COVID-19 has spread rapidly all over the world. Due to increasing COVID-19 cases, there is a dearth of testing kits. Therefore, there is a severe need for an automatic recognition system as a solution to reduce the spreading of the COVID-19 virus. This work offers a decision support system based on the X-ray image to diagnose the presence of the COVID-19 virus. A deep learning-based computer-aided decision support system will be capable to differentiate between COVID-19 and pneumonia. Recently, convolutional neural network (CNN) is designed for the diagnosis of COVID-19 patients through (or , CXR) images. However, due to the usage of CNN, there are some limitations with these decision support systems. These systems suffer with the problem of view-invariance and loss of information due to down-sampling. In this paper, the capsule network (CapsNet)-based system named visual geometry group capsule network (VGG-CapsNet) for the diagnosis of COVID-19 is proposed. Due to the usage of capsule network (CapsNet), the authors have succeeded in removing the drawbacks found in the CNN-based decision support system for the detection of COVID-19. Through simulation results, it is found that VGG-CapsNet has performed better than the CNN-CapsNet model for the diagnosis of COVID-19. The proposed VGG-CapsNet-based system has shown 97% accuracy for COVID-19 versus non-COVID-19 classification, and 92% accuracy for COVID-19 versus normal versus viral pneumonia classification. Proposed VGG-CapsNet-based system available at https://github.com/shamiktiwari/COVID19_Xray can be used to detect the existence of COVID-19 virus in the human body through chest radiographic images.

摘要

新型冠状病毒COVID-19已在全球迅速传播。由于COVID-19病例不断增加,检测试剂盒短缺。因此,迫切需要一种自动识别系统作为减少COVID-19病毒传播的解决方案。这项工作提供了一种基于X射线图像的决策支持系统,用于诊断COVID-19病毒的存在。基于深度学习的计算机辅助决策支持系统将能够区分COVID-19和肺炎。最近,卷积神经网络(CNN)被设计用于通过胸部X光(CXR)图像诊断COVID-19患者。然而,由于使用了CNN,这些决策支持系统存在一些局限性。这些系统存在视角不变性问题以及由于下采样导致的信息丢失问题。本文提出了一种基于胶囊网络(CapsNet)的系统,即视觉几何组胶囊网络(VGG-CapsNet),用于诊断COVID-19。由于使用了胶囊网络(CapsNet),作者成功消除了基于CNN的COVID-19检测决策支持系统中发现的缺点。通过仿真结果发现,VGG-CapsNet在COVID-19诊断方面的表现优于CNN-CapsNet模型。所提出的基于VGG-CapsNet的系统在COVID-19与非COVID-19分类中显示出97%的准确率,在COVID-19与正常与病毒性肺炎分类中显示出92%的准确率。可在https://github.com/shamiktiwari/COVID19_Xray上获取的基于VGG-CapsNet的系统可用于通过胸部X光图像检测人体中COVID-19病毒的存在。

相似文献

引用本文的文献

7
Chest X-ray analysis empowered with deep learning: A systematic review.基于深度学习的胸部X光分析:一项系统综述。
Appl Soft Comput. 2022 Sep;126:109319. doi: 10.1016/j.asoc.2022.109319. Epub 2022 Jul 18.

本文引用的文献

1
Chest Imaging Appearance of COVID-19 Infection.新型冠状病毒肺炎感染的胸部影像学表现。
Radiol Cardiothorac Imaging. 2020 Feb 13;2(1):e200028. doi: 10.1148/ryct.2020200028. eCollection 2020 Feb.
5
Artificial intelligence-enabled rapid diagnosis of patients with COVID-19.人工智能助力 COVID-19 患者快速诊断。
Nat Med. 2020 Aug;26(8):1224-1228. doi: 10.1038/s41591-020-0931-3. Epub 2020 May 19.
9
A Review of Coronavirus Disease-2019 (COVID-19).新型冠状病毒肺炎(COVID-19)概述。
Indian J Pediatr. 2020 Apr;87(4):281-286. doi: 10.1007/s12098-020-03263-6. Epub 2020 Mar 13.
10
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验