Suppr超能文献

分析具有二元结局的整群随机试验时逻辑回归模型的替代方法。

Alternatives to Logistic Regression Models when Analyzing Cluster Randomized Trials with Binary Outcomes.

作者信息

Huang Francis L

机构信息

Department of Educational, School, and Counseling Psychology, University of Missouri, 16 Hill Hall, Columbia, MO, 65211, USA.

出版信息

Prev Sci. 2023 Apr;24(3):398-407. doi: 10.1007/s11121-021-01228-5. Epub 2021 Apr 6.

Abstract

Binary outcomes are often encountered when analyzing cluster randomized trials (CRTs). A common approach to obtaining the average treatment effect of an intervention may involve using a logistic regression model. We outline some interpretive and statistical challenges associated with using logistic regression and discuss two alternative/supplementary approaches for analyzing clustered data with binary outcomes: the linear probability model (LPM) and the modified Poisson regression model. In our simulation and applied example, all models use a standard error adjustment that is effective even if a low number of clusters is present. Simulation results show that both the LPM and modified Poisson regression models can provide unbiased point estimates with acceptable coverage and type I error rates even with as little as 20 clusters.

摘要

在分析整群随机试验(CRT)时,经常会遇到二元结局。获得干预平均治疗效果的一种常见方法可能涉及使用逻辑回归模型。我们概述了与使用逻辑回归相关的一些解释性和统计挑战,并讨论了两种用于分析具有二元结局的聚类数据的替代/补充方法:线性概率模型(LPM)和修正泊松回归模型。在我们的模拟和应用示例中,所有模型都使用了一种标准误差调整方法,即使聚类数量较少时该方法也有效。模拟结果表明,即使只有20个聚类,LPM和修正泊松回归模型都可以提供具有可接受的覆盖率和I型错误率的无偏点估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验